Hedonic Game Related Research

Title:Welfare maximization in fractional hedonic games

authors:Haris Aziz, Serge Gaspers Joachim, Gudmundsson, Juli´an Mestre

  • hedonic game: comprises a set of agents who express preferences over coalitions they are they are present in and outcomes are partitions of the agents into disjoint coalitions. It provides a natural framework to study coalition formation.
  • fractional hedonic games: each vertex of the network can be considered as an agent. An agent is valuation vi(j) of an agent j can be represented by the weight of the directed edge (i,j). Agent is valuation of a coalition S of agents is the mean valuation jSvi(j)/S of the members of S .

A hedonic game (N,) is said to be a fractional hedonic game(FHG) if for each player i in N there is a value function vi such that for all coalitions S,TN , SiT if and only if vi(S)vi(T) .

Main contributions:
  1. simple examples that show that utilitarian, egalitarian, and Nash welfare maximizing outcomes need not coincide, even in simple symmetric FHGs.
  2. a reduction that shows that maximizing utilitarian welfare, egalitarian welfare, or Nash welfare is NP-hard, even for simple symmetric FHGs.
  3. a ploynomial-time 2-approximation algorithm for maximizing the utilitarian welfare of simple symmetric FHGs.
  4. a polynomialtime 4-approximation algorithm for maximizing the utilitarian welfare of symmetric FHGs.
  5. a polynomial-time 3-approximation algorithm for maximizing the egalitarian welfare of simple symmetric FHGs
  • hedonic games based on graphs examined from a social welfare perspective.
  • a related class of hedonic game: additive seperabel hedonic games, consider welfare maximizing or stable partitions of FHGs and why stable or efficient outcomes of FHGs provide better clusterings.
  • Olsen[2012] examined a variant of FHGs and considered computation of Nash stable outcomes.
  • the prior work on FHGs, most of the focus has been on stabel partitions, this has a disadvantage that a stable outcome may not be guaranteed to exist[Aziz et al., 2014; Bilo` et al., 2014; Brandl et al., 2015] or may suggest the partition consisting of the grand coalition [Bilo` et al., 2014].
Theorem

Definitions

  • symmetric: an FHG is said to be symmetric if vi(j)=vj(i)
  • simple: an FHG is said to be simple if vi(j){0,1}
  • notions of welfare of a partition μ of N
    1. utilitarian welfare: (sum of utilities)
      iNvi(μ(i))
    2. egalitarian welfare: (utility of worst off agent)
      miniNvi(μ(i))
    3. Nash welfare: (product of utilities)
      iNvi(μ(i))

Theorem:

  1. For simple symmetric FHGs, utilitarian welfare and egalitarian welfare are both NP-hard.
  2. For simple symmtric FHGs, Nash welfare is NP-hard.
  3. For simple symmtric FHGs, utilitarian welfare has a linear-time 4-approximation algorithm.
  4. For simple symmtric FHGs, utilitarian welfare has an O(|N||E|) time 2-approximation algorithm.
  5. For symmtric FHGs, utilitarian welfare has a polynomial-time 4-approximation algrithm.
  6. For simple symmtric FHGs, egalitarian welfare has a polynominal-time 3-approximation algorithm.

Hedonic Game Theorem

Definitions:

  • finite set N of players
  • coalition = non-empty subset of N
  • partition Π divides N into disjoint coalitions
  • Π(i) denotes coalition in Π caontaining player iN
  • every player iN ranks all the coalitions containing i via i and i ( that means player i express its preferences through iori)
  • a coalition S blocks a partition Π , if all players iS have Π(i)S and hence strictly prefer being in S to being in current coalition Π(i)

Central definition:
A partition Π is core stable, if there is no blocking coalition S.
Closely related:
weakly blocking coalition( no player worse; at least one player better off)
strongly core stable partition( no weakly blocking cailition)

Problem:
Given: set N with all the preferences of the players.
Decide whether there exists some core stable partition.

Main problem: ΠS:¬(SblocksΠ)

Compansion problem: Given game andpartition, decide whether there is a blocking coalition.
S:(SblocksΠ)
Negation of inner problem S:¬(SblocksΠ))

Observation:
If the companion problen is solveable in polynomial time, then the main paoblem is contained in NP.

The Ballester encoding

Preferences from graphs
friend-oriented
[Dimitrov, Borm, Hendrickx, Sung,2006] propose preference structures based on directed graphs G = (N,A).
An arch (x,y) from player x to y means that x considers y as a friend. Set Fx contains the friends of player x , and set Ex contains his enemies.
Definitions
Player x prefers S to T (“SxT”), if and only if

  1. |SFx|>|TFx| or
  2. |SFx|=|TFx| and |SEx||TEx|

Theorem: under friend-oriented preferences, there always is a core stable partition.(Proof:11/30)

enemy-oriented
[Dimitrov & al 2006] also discuss graph-based enemy-oriented preferences.
Definitions
Player x prefers S to T (“SxT”), if and only if

  1. |SEx|<|TEx| or
  2. |SEx|=|TEx| and |SFx||TFx|

If player x does not like player y, then in any core partition x and y must not in the same coalition.
Assume that friendship is mutual/symmetric, and use undirected graphs. In core stable partition, every coalition is a clique.

Theorem

  • Under enemy-oriented preferences, there always is a core stable partition.
  • Under enemy-oriented preferences, compansion-probelm is NP-complete.(Proof:13/30)

Additive preferences
Every palyer x assigns to every other player y a real value vx(y) . High positive value = very attracted; negative value = aversion.

Player x values coalition S as vx(S)=sSvx(s)
Player x ranks SxT if and only if vx(S)vx(T)

Theorem
Under additive preferences, the compansion-problem is NP-complete.[Sung, Dimitrov, 2007]
Under additive preferences, the main-problem is p2 -complete. [Woeginger, 2012]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值