bzoj1488 [HNOI2009]图的同构 Burnside 引理

题目传送门

bzoj1488 - [HNOI2009]图的同构

bzoj1815 - [Shoi2006]color 有色图(双倍经验)

题解

暴力

由于在做题之前已经被告知是 Burnside 引理,貌似思考的时候少了一些乐趣啊。

考虑一个置换 \(p\),想要求出这个置换下的不动点的个数。对于一个不动点,若存在一条边 \((a, b)\),一定存在一条边 \((p_a, p_b)\)

那么考虑一个长度为 \(l\) 的循环,若 \((i, j)\) 是一条 \(i, j\) 均在循环中的点内部的边,那么所有距离等于 \(i, j\) 的距离的点对之间都会有一条边。这样,我们一共可以将这些边分成 \(\frac x2\) 中内部绑定的组。因此,一个长度为 \(l\) 的循环可以产生 \(2^{\frac x2}\) 种方案的贡献。

下面考虑一条两个端点分别在长度为 \(x\) 的循环和 \(y\) 的循环上的边。这样的话,一条边的两个端点在两个循环上走,一直到下一次两个端点都与原来的两个端点重合。显然对于一组点,会走过 \(\operatorname{lcm}(x, y)\) 个点。于是,一共有 \(\frac {xy}{\operatorname{lcm}(x, y)} = \gcd(x, y)\) 组。贡献为 \(2^{\gcd(x, y)}\) 种方案。

优化

但是暴力算法显然会 TLE。

我们一个置换的贡献仅取决于它的每一个循环的长度,因此我们只需要知道它的每一个循环的长度就可以求出贡献了。

于是我们可以使用 Burnside 引理相关题目的常见套路。

我们用 \(B(n)\) 来表示整数划分的方案数。整数划分是指将 \(n\) 划分为若干个无序的正整数的和。当 \(n=100\) 时,\(B(n)\) 大概是 1e6。当 \(n = 40\) 时大概是 \(4e4\) 左右,\(n=45\) 时候大约 \(9e4\)

因此,由于本题 \(n=45\),如果暴力枚举划分的话,不会超过 \(9e4\) 次。

那么我们如果枚举出 \(n=\sum \limits_{i=1}^k L_i\),那么方案相当于是从 \(n\) 个位置中选出 \(L_1\) 个位置作为第一个循环的成分,再从剩下的 \(n-L_1\) 个位置中选出 \(L_2\) 个……

因此对于这样的划分,其方案数是:
\[ \begin{align*} &\binom n{L_1} \binom{n-L_1}{L2} \binom{n-L_1-L_2}{L_2}\cdots\\ =&\frac{n!}{\prod \limits_{i=1}^k Li!} \end{align*} \]
(实际上也可以从可重复元素的全排列的角度考虑

然后求出来划分的方案数以后,我们还需要把每一个数放进这些被安排好的位置,使得每一段真的是一个循环。一个循环的第一个数可以考虑连接到这一段剩余的 \(L-1\) 个位置的任何一个位置。然后对于刚刚选择的那个位置,它又可以连接到剩余的 \(L-2\) 个位置。因此对于一个长度为 \(L\) 的循环,它的合法安排数字的方案数为 \((L-1)!\)

但是还有一个小问题,如果有两个长度相同的置换,他们是没有什么先后区别的,但是在用之前的组合计算方法的时候,会产生先后的区别。这是不应该产生的。因此令 \(C_i\) 表示等于 \(i\)\(L\) 值的个数。我们还需要乘上 \(C_i!\)

因此对于一个整数划分的总方案数为:
\[ \frac {n!}{\prod\limits_{i=1}^k L_i \prod\limits_{i=1}^n C_i!} \]
然后就是和暴力一样的计算不动点的个数了。

最终答案为:
\[ \sum_{L} \frac {\prod \limits_{i=1}^k 2^{\frac {L_i}2}\prod \limits_{i=1}^k \prod \limits_{j=i+1}^k 2^{\gcd(L_i, L_j)} }{\prod\limits_{i=1}^k L_i \prod\limits_{i=1}^n C_i!} \]


下面是代码。由于 \(\gcd\)\(2\) 的正整数幂均可以预处理,因此总的时间复杂度为 \(O(B_n\cdot n^2)\).

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back

template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ?  a = b , 1 : 0;}

typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;

template<typename I>
inline void read(I &x) {
    int f = 0, c;
    while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
    x = c & 15;
    while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
    f ? x = -x : 0;
}

const int N = 200 + 7;
const int P = 997;

int n, ans, hkk;
int inv[N], fac[N], ifac[N << 1], pw[N], gcd[N][N];
int l[N];

inline void sadd(int &x, int y) { x += y; x >= P ? x -= P : x; }
inline int smod(int x) { return x >= P ? x - P : x; }

inline void ycl() {
    fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = (ll)fac[i - 1] * i % P;
    inv[1] = 1; for (int i = 2; i <= n; ++i) inv[i] = (ll)(P - P / i) * inv[P % i] % P;
    ifac[0] = 1; for (int i = 1; i <= n; ++i) ifac[i] = (ll)ifac[i - 1] * inv[i] % P;
    pw[0] = 1; for (int i = 1; i <= n; ++i) pw[i] = smod(pw[i - 1] << 1);
    for (int i = 0; i <= n; ++i) {
        for (int j = 0; j <= i; ++j) {
            if (!i || !j) gcd[i][j] = i ^ j;
            else gcd[i][j] = gcd[j][i % j];
            gcd[j][i] = gcd[i][j];
//          dbg("%d %d %d\n", i, j, gcd[i][j]);
        }
    }
}

inline void calc(int div) {
    int cnt = 1;
    for (int i = 1; i <= l[0]; ++i) cnt = (ll)cnt * pw[l[i] / 2] % P;//, dbg("l[%d] = %d, %d\n", i, l[i], pw[l[i] / 2]);
    for (int i = 1; i <= l[0]; ++i)
        for (int j = 1; j < i; ++j) cnt = (ll)cnt * pw[gcd[l[i]][l[j]]] % P;//, dbg("*****************");
    sadd(ans, (ll)cnt * div % P);
}

inline void dfs(int n, int lim, int div) {
//  dbg("n = %d, lim = %d, div = %d\n", n, lim, div);
    if (!n) return calc(div);
    for (int i = std::min(lim, n); i; --i) {
        int df = div;
        for (int j = 1; i * j <= n; ++j) {
            df = (ll)df * inv[i] % P, l[++l[0]] = i;
            dfs(n - i * j, i - 1, (ll)df * ifac[j] % P);
        }
        while (l[l[0]] == i) --l[0];
    }
}

inline void work() {
    ycl();
    ans = 0;
    dfs(n, n, 1);
    printf("%d\n", ans);
}

inline void init() {
    read(n);
}

int main() {
#ifdef hzhkk
    freopen("hkk.in", "r", stdin);
#endif
    init();
    work();
    fclose(stdin), fclose(stdout);
    return 0;
}

附录 - bzoj1815 - [Shoi2006]color 有色图 代码

发现只需要把上面的有/无的状态改为 \(k\) 中颜色就可以了。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back

template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;}

typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;

template<typename I>
inline void read(I &x) {
    int f = 0, c;
    while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
    x = c & 15;
    while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
    f ? x = -x : 0;
}

const int N = 53 + 7;

int n, k, P, ans;
int inv[N], fac[N], ifac[N << 1], pw[N], gcd[N][N];
int l[N];

inline void sadd(int &x, int y) { x += y; x >= P ? x -= P : x; }
inline int smod(int x) { return x >= P ? x - P : x; }

inline void ycl() {
    fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = (ll)fac[i - 1] * i % P;
    inv[1] = 1; for (int i = 2; i <= n; ++i) inv[i] = (ll)(P - P / i) * inv[P % i] % P;
    ifac[0] = 1; for (int i = 1; i <= n; ++i) ifac[i] = (ll)ifac[i - 1] * inv[i] % P;
    pw[0] = 1; for (int i = 1; i <= n; ++i) pw[i] = (ll)pw[i - 1] * k % P;
    for (int i = 0; i <= n; ++i) {
        for (int j = 0; j <= i; ++j) {
            if (!i || !j) gcd[i][j] = i ^ j;
            else gcd[i][j] = gcd[j][i % j];
            gcd[j][i] = gcd[i][j];
//          dbg("%d %d %d\n", i, j, gcd[i][j]);
        }
    }
}

inline void calc(int div) {
    int cnt = 1;
    for (int i = 1; i <= l[0]; ++i) cnt = (ll)cnt * pw[l[i] / 2] % P;//, dbg("l[%d] = %d, %d\n", i, l[i], pw[l[i] / 2]);
    for (int i = 1; i <= l[0]; ++i)
        for (int j = 1; j < i; ++j) cnt = (ll)cnt * pw[gcd[l[i]][l[j]]] % P;//, dbg("*****************");
    sadd(ans, (ll)cnt * div % P);
}

inline void dfs(int n, int lim, int div) {
//  dbg("n = %d, lim = %d, div = %d\n", n, lim, div);
    if (!n) return calc(div);
    for (int i = std::min(lim, n); i; --i) {
        int df = div;
        for (int j = 1; i * j <= n; ++j) {
            df = (ll)df * inv[i] % P, l[++l[0]] = i;
            dfs(n - i * j, i - 1, (ll)df * ifac[j] % P);
        }
        while (l[l[0]] == i) --l[0];
    }
}

inline void work() {
    ycl();
    ans = 0;
    dfs(n, n, 1);
    printf("%d\n", ans);
}

inline void init() {
    read(n), read(k), read(P);
}

int main() {
#ifdef hzhkk
    freopen("hkk.in", "r", stdin);
#endif
    init();
    work();
    fclose(stdin), fclose(stdout);
    return 0;
}

转载于:https://www.cnblogs.com/hankeke/p/bzoj1488.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值