已知两边和夹角求第三边长_已知任意三角形的两边和夹角,怎样用三角函数求出第三边的长度...

本文介绍了解决三角形问题的两种方法:一是利用余弦定理直接求解;二是通过构造直角三角形并结合勾股定理进行计算。此外还提供了余弦定理的角元形式证明及判定定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

展开全部

两种方法:

一、最简单的,使用三32313133353236313431303231363533e4b893e5b19e31333431336161角函数的余弦定理。

c²=a²+b²-2abcosC

依据上述公式,直接求解,即得。

二、勾股定理,以已知的一边为斜边,夹角为直角三角形的一内角,做一直角三角形。求出高及一直角边。结合待求的边,又是一直角三角形,再计算出即可。

扩展资料:

在△ABC中,

sin²A+sin²B-sin²C

=[1-cos(2A)]/2+[1-cos(2B)]/2-[1-cos(2C)]/2(降幂公式)

=-[cos(2A)+cos(2B)]/2+1/2+1/2-1/2+[cos(2C)]/2

=-cos(A+B)cos(A-B)+[1+cos(2C)]/2(和差化积)

=-cos(A+B)cos(A-B)+cos²C(降幂公式)

=cosC*cos(A-B)-cosC*cos(A+B)(∠A+∠B=180°-∠C以及诱导公式)

=cosC[cos(A-B)- cos(A+B)]

=2cosC*sinA*cinB(和差化积)(由此证明余弦定理角元形式)

判定定理:

若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值。

①若m(c1,c2)=2,则有两解;

②若m(c1,c2)=1,则有一解;

③若m(c1,c2)=0,则有零解(即无解)。

注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值