具有紧支集的光滑(无穷阶连续可微)函数

我们定义一个函数$f$的支集$${\rm supp}f=\overline{\{x:f(x)\neq0\}}$$

数学分析中一个常见的例子,考虑如下函数$$f(x)=\left\{\begin{matrix}e^{-\frac{1}{x^2}}&x\neq0\\0&x=0\end{matrix}\right.$$我们来说明$f\in C^{\infty}(\mathbb R)$,事实上仅需说明$f$在$x=0$处无穷次连续可微即可.直接计算显然有$$f'(x)=\left\{\begin{matrix}\frac{2}{x^3}e^{-\frac{1}{x^2}}&x\neq0\\0&x=0\end{matrix}\right.$$不难用数学归纳法证明当$x\neq0$时有$f^{(n)}(x)=P_n\left(\frac{1}{x}\right)e^{-\frac{1}{x^2}}$,其中$P_n(t)$是$t$的多项式(事实上是$3n$次的),继续可用数学归纳法证明$$f^{(n)}(0)=\lim_{x\to0}\frac{f^{(n-1)}(x)-f^{(n-1)}(0)}{x}=0=\lim_{x\to0}f^{(n)}(x),\forall n\in\mathbb N$$
这说明$f(x)$确实在$\mathbb R$上是光滑的.\\
同样的方法我们可以说明如下函数$$f(x)=\left\{\begin{matrix}e^{\frac{1}{x^2-a^2}}&|x|<a\\0&|x|\geq a\end{matrix}\right.$$也是$\mathbb R$上的光滑函数,并且显然其支集${\rm supp}f$是紧集(有界闭集).\\
一般的,在复平面中设$a\in\mathbb C,r>0$,定义函数$$f(z)=\left\{\begin{matrix}e^{\frac{1}{|z-a|^2-r^2}}&z\in B(a,r)\\0&z\notin B(a,r)\end{matrix}\right.$$在整个复平面上是光滑的,并且具有紧支集.

转载于:https://www.cnblogs.com/1036464679hxl/p/8931680.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值