具有紧支集的光滑(无穷阶连续可微)函数

我们定义一个函数$f$的支集$${\rm supp}f=\overline{\{x:f(x)\neq0\}}$$

数学分析中一个常见的例子,考虑如下函数$$f(x)=\left\{\begin{matrix}e^{-\frac{1}{x^2}}&x\neq0\\0&x=0\end{matrix}\right.$$我们来说明$f\in C^{\infty}(\mathbb R)$,事实上仅需说明$f$在$x=0$处无穷次连续可微即可.直接计算显然有$$f'(x)=\left\{\begin{matrix}\frac{2}{x^3}e^{-\frac{1}{x^2}}&x\neq0\\0&x=0\end{matrix}\right.$$不难用数学归纳法证明当$x\neq0$时有$f^{(n)}(x)=P_n\left(\frac{1}{x}\right)e^{-\frac{1}{x^2}}$,其中$P_n(t)$是$t$的多项式(事实上是$3n$次的),继续可用数学归纳法证明$$f^{(n)}(0)=\lim_{x\to0}\frac{f^{(n-1)}(x)-f^{(n-1)}(0)}{x}=0=\lim_{x\to0}f^{(n)}(x),\forall n\in\mathbb N$$
这说明$f(x)$确实在$\mathbb R$上是光滑的.\\
同样的方法我们可以说明如下函数$$f(x)=\left\{\begin{matrix}e^{\frac{1}{x^2-a^2}}&|x|<a\\0&|x|\geq a\end{matrix}\right.$$也是$\mathbb R$上的光滑函数,并且显然其支集${\rm supp}f$是紧集(有界闭集).\\
一般的,在复平面中设$a\in\mathbb C,r>0$,定义函数$$f(z)=\left\{\begin{matrix}e^{\frac{1}{|z-a|^2-r^2}}&z\in B(a,r)\\0&z\notin B(a,r)\end{matrix}\right.$$在整个复平面上是光滑的,并且具有紧支集.

转载于:https://www.cnblogs.com/1036464679hxl/p/8931680.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
利用高多项式可以逼近连续可导原函数的方法,可以使用牛顿插值公式或拉格朗日插值公式。 1. 牛顿插值公式 牛顿插值公式是通过构造一个多项式函数来逼近原函数的方法。具体步骤如下: (1)选择一个节点序列x0, x1, …, xn,其中xi和xi+1之间的间隔为h。 (2)计算原函数在节点序列上的函数值f(x0), f(x1), …, f(xn)。 (3)利用差商公式计算出节点序列的一差商、二差商、…、n差商。 (4)构造出一个多项式函数Pn(x),其表达式为: Pn(x) = f(x0) + (x - x0)f[x0, x1] + (x - x0)(x - x1)f[x0, x1, x2] + … + (x - x0)(x - x1)…(x - xn-1)f[x0, x1, …, xn] 其中f[x0, x1], f[x0, x1, x2], …, f[x0, x1, …, xn]为差商。 (5)计算出多项式函数的值Pn(x),即为原函数在x处的近似值。 2. 拉格朗日插值公式 拉格朗日插值公式是利用一组基函数对原函数进行逼近的方法。具体步骤如下: (1)选择一个节点序列x0, x1, …, xn,其中xi和xi+1之间的间隔为h。 (2)构造n+1个基函数Li(x),其表达式为: Li(x) = ∏j≠i (x - xj) / (xi - xj) (3)构造出一个多项式函数Pn(x),其表达式为: Pn(x) = ∑i=0n f(xi)Li(x) 其中f(xi)为原函数在节点xi处的函数值。 (4)计算出多项式函数的值Pn(x),即为原函数在x处的近似值。 需要注意的是,高多项式逼近连续可导原函数的精度会受到节点序列的选择和多项式次数的限制。如果节点序列过密或多项式次数过高,可能会导致过拟合问题,从而使逼近结果失真。因此,在实际应用中需要根据具体情况进行选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值