最优化理论·光滑函数·Hessian矩阵·Jacobian矩阵·方向导数

本文详细介绍了最优化理论中的光滑函数概念,包括一阶光滑函数和C∞函数,并探讨了梯度向量、Jacobian矩阵和Hessian矩阵的定义及它们之间的关系。此外,还解释了一阶和二阶方向导数的计算方法,为理解和应用优化理论提供了基础。
摘要由CSDN通过智能技术生成

最优化理论·光滑函数·Hessian矩阵·Jacobian矩阵·方向导数

标签(空格分隔): 数学


1.光滑函数

  • smooth function: 光滑函数
  • 最优化中提到的光滑函数 f(x) 是指 C1 函数(一阶光滑),即 f(x) 本身是连续的(任何位置都没有breaks),并且,它的导函数也是连续的(原函数 f(x) 在任何位置都没有abrupt bends)
  • 下面的函数为非光滑函数,它虽然是连续的,但它在x=0处具有abrupt bends,它的一阶导数不是连续的
    image_1b2i41npd1c5d1emvtjd1p1urd51t.png-9.8kB
  • 下面是一个 C1 函数的例子
    • 函数 f(x)=x|x|
      image_1b2hu17j31l9onldvbd1j721tss9.png-6.8kB
    • 函数 f(x)=x|x| 的导函数 |x| ,可见,它是连续函数,所以,函数 f(x)=x|x| C1 函数
      image_1b2hu2g3o1d8s13q011e0pin1q1dm.png-8.2kB
    • 继续对上面的一阶导函数求导函数,得到如下结果,此时的导函数不再连续了(它其实是原函数的二阶导函数),也就是说,原函数仅仅是 C1 函数,而不是 C2 函数
      image_1b2hu79msd2d7l1fto1gf1q9g13.png-3.9kB
    • 综上,函数 f(x)=x|x| 是一阶光滑函数(一阶导函数连续,而更高阶导函数不再连续)
  • 下面是一个 C 的例子(任意阶光滑 ): f(x)=x3
    • 原函数
      image_1b2i2tcth1mv21cja1og93b110uu9.png-8.6kB
    • 一阶导函数,连续
      image_1b2i2tual1d6pbdk38p10qh15j7m.png-6.4kB
    • 二阶导函数,连续
      image_1b2i2ui4t4qrg0opgh14ng1npj13.png-3.9kB
    • 三阶导函数,取值为0,同样连续
      image_1b2i2vbrunlke421rf9hgm1aal1g.png-3.7kB
    • 其他各阶导函数,都为0,连续,所以, f(x)=x3 为无穷多阶光滑

Refernece

[1]What is a smooth function? And why is it important?
[2]Smooth vs. Non-smooth Functions
[3]image_1b2i43bvghudrr513p6ir71dt42a.png-82.8kB

2 梯度向量、Jacobian矩阵和Hessian矩阵

这里讨论的三个概念:梯度向量、Jacobian矩阵和Hessian矩阵

  • 它的自变量: x=(x1,x2,,xn)T
  • 因变量有两种情况:
    • 一维 f(x)
      • 此时的一阶导数构成的向量为梯度向量 g(x)
      • 二阶导数构成的矩阵为Hessian矩阵
    • 多维 f(x)=(f1(x),f2(x),,fm(x))T
      • 此时的一阶导数构成的矩阵为Jacobian矩阵

2.1 梯度向量

即目标函数 f 为单变量,它是关于自变量向量 x=(x1,x2,,xn)T 的函数,此时,单变量函数 f 对向量 x 求梯度,得到的结果为一个与向量 x 同维度的向量,称之为梯度向量

g(x)=f(x)=(fx1,fx2,,fxn)T

2.2 Jacobian矩阵

即目标函数 f

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值