卷积

    在泛函分析中,卷积捲積)、旋積疊積摺積,是通过两个函数fg生成第三个函数的一种数学算子,表征函数f与经过翻转和平移的g的重叠部分的面积。如果将参加卷积的一个函数看作区间指示函数,卷积还可以被看作是“移动平均”的推广。

   卷积是分析数学中一种重要的运算。设: f(x),g(x)\mathbb{R}上的两个可积函数,作积分:

 \int_{-\infty}^{\infty} f(\tau) g(x - \tau)\, \mathrm{d}\tau

   可以证明,关于几乎所有的x \in (-\infty,\infty),上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数fg的卷积,记为h(x)=(f*g)(x)。我们可以轻易验证:(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L^1(R^1)空间是一个代数,甚至是巴拿赫代数

   卷积与傅里叶变换有着密切的关系。例如两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,利用此一性质,能简化傅里叶分析中的许多问题。

   由卷积得到的函数f*g一般要比fg都光滑。特别当g为具有紧支集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列f_s,这种方法称为函数的光滑化或正则化。

   卷积的概念还可以推广到数列、测度以及广义函数上去。

   具体定义:

函数fg的卷积记作f * g,它是其中一个函数翻转并平移后与另一个函数的乘积的积分,是一个对平移量的函数。

(f * g)(t) = \int f(\tau) g(t - \tau)\, d\tau

积分区间取决于fg定义域

对于定义在离散域的函数,卷积定义为

(f  * g)[m] = \sum_n {f[n] g[m - n]}

参考:

  维基百科


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值