pytorch显示网络结构

 

 

转发:https://blog.csdn.net/gyguo95/article/details/78821617

首先要安装

graphviz
    • 这种方法需要安装python-graphviz
      conda install -n pytorch python-graphviz
visualize.py

from graphviz import Digraph import torch from torch.autograd import Variable def make_dot(var, params=None): """ Produces Graphviz representation of PyTorch autograd graph Blue nodes are the Variables that require grad, orange are Tensors saved for backward in torch.autograd.Function Args: var: output Variable params: dict of (name, Variable) to add names to node that require grad (TODO: make optional) """ if params is not None: assert isinstance(params.values()[0], Variable) param_map = {id(v): k for k, v in params.items()} node_attr = dict(style='filled', shape='box', align='left', fontsize='12', ranksep='0.1', height='0.2') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) seen = set() def size_to_str(size): return '('+(', ').join(['%d' % v for v in size])+')' def add_nodes(var): if var not in seen: if torch.is_tensor(var): dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange') elif hasattr(var, 'variable'): u = var.variable name = param_map[id(u)] if params is not None else '' node_name = '%s\n %s' % (name, size_to_str(u.size())) dot.node(str(id(var)), node_name, fillcolor='lightblue') else: dot.node(str(id(var)), str(type(var).__name__)) seen.add(var) if hasattr(var, 'next_functions'): for u in var.next_functions: if u[0] is not None: dot.edge(str(id(u[0])), str(id(var))) add_nodes(u[0]) if hasattr(var, 'saved_tensors'): for t in var.saved_tensors: dot.edge(str(id(t)), str(id(var))) add_nodes(t) add_nodes(var.grad_fn) return dot

  

import ResNet34
import numpy as np
import torch
from torch.autograd import Variable
from visualize import make_dot
from ResNet34 import NetG
import torch as t

class Config(object):

    nz = 500 # 噪声维度
    ngf = 64  # 生成器feature map数
    ndf = 64  # 判别器feature map数
    gen_search_num = 3  # 从512张生成的图片中保存最好的64张
    g_every = 5  # 每5个batch训练一次生成器
    gen_mean = 0  # 噪声的均值
    gen_std = 2  # 噪声的方差
    gen_num = 1
    batch_size = 256
    gpu = False  # 是否使用GPU
    gen_img = '2018.png'

if __name__ == '__main__':

    opt = Config()
    a = NetG(opt)
    noises = t.randn(opt.gen_search_num, opt.nz, 1, 1).normal_(opt.gen_mean, opt.gen_std)
    noises = Variable(noises, volatile=True)
    y = a(noises)
    print(y.size())
    g = make_dot(y)
    g.view()
    #g.render('here', view=False)

  

转载于:https://www.cnblogs.com/dudu1992/p/9149737.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值