机器学习工程师 - Udacity 卷积层的维度计算

from keras.models import Sequential
from keras.layers import Conv2D

model = Sequential()
model.add(Conv2D(filters=16, kernel_size=2, strides=2, padding='valid', 
    activation='relu', input_shape=(200, 200, 1)))
model.summary()

注意卷积层中的参数数量是如何变化的。对应的是输出内容中的 Param # 下的值。在上图中,卷积层具有 80 个参数。

同时注意卷积层的形状是如何变化的。对应的是输出内容中的 Output Shape 下的值。在上图中,None 对应的是批次大小,卷积层的高度为 100,宽度为 100,深度为 16。

公式:卷积层中的参数数量
卷积层中的参数数量取决于 filters、kernel_size 和 input_shape 的值。我们定义几个变量:

K - 卷积层中的过滤器数量
F - 卷积过滤器的高度和宽度
D_in - 上一层级的深度
注意:K = filters,F = kernel_size。类似地,D_in 是 input_shape 元组中的最后一个值。

因为每个过滤器有 F*F*D_in 个权重,卷积层由 K 个过滤器组成,因此卷积层中的权重总数是 K*F*F*D_in。因为每个过滤器有 1 个偏差项,卷积层有 K 个偏差。因此,卷积层中的参数数量是 K*F*F*D_in + K。

公式:卷积层的形状
卷积层的形状取决于 kernel_size、input_shape、padding 和 stride 的值。我们定义几个变量:

K - 卷积层中的过滤器数量
F - 卷积过滤器的高度和宽度
H_in - 上一层级的高度
W_in - 上一层级的宽度
注意:K = filters、F = kernel_size,以及S = stride。类似地,H_in 和 W_in 分别是 input_shape 元组的第一个和第二个值。

卷积层的深度始终为过滤器数量 K。

如果 padding = 'same',那么卷积层的空间维度如下:

height = ceil(float(H_in) / float(S))
width = ceil(float(W_in) / float(S))
如果 padding = 'valid',那么卷积层的空间维度如下:

height = ceil(float(H_in - F + 1) / float(S))
width = ceil(float(W_in - F + 1) / float(S))

转载于:https://www.cnblogs.com/paulonetwo/p/10040722.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值