深度学习常见的优化方法(Optimizer)总结:Adam,SGD,Momentum,AdaGard等

机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需

基础知识:


机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣,同时利用损失函数来提升算法模型.

这个提升的过程就叫做优化(Optimizer)

下面这个内容主要就是介绍可以用来优化损失函数的常用方法

常用的优化方法(Optimizer):
  • 1.SGD&BGD&Mini-BGD:

    SGD(stochastic gradient descent):随机梯度下降,算法在每读入一个数据都会立刻计算loss function的梯度来update参数.假设loss function为L(w),下同.\[w-=\eta \bigtriangledown_{w_{i}}L(w_{i}) \]

    Pros:收敛的速度快;可以实现在线更新;能够跳出局部最优

    Cons:很容易陷入到局部最优,困在马鞍点.

    BGD(batch gradient descent):批量梯度下降,算法在读取整个数据集后累加来计算损失函数的的梯度
    \[w-=\eta \bigtriangledown_{w}L(w)\]

    Pros:如果loss function为convex,则基本可以找到全局最优解

    Cons:数据处理量大,导致梯度下降慢;不能实时增加实例,在线更新;训练占内存

    Mini-BGD(mini-batch gradient descent):顾名思义,选择小批量数据进行梯度下降,这是一个折中的方法.采用训练集的子集(mini-batch)来计算loss function的梯度.\[w-=\eta \bigtriangledown_{w_{i:i+n}}L(w_{i:i+n})\]

    这个优化方法用的也是比较多的,计算效率高而且收敛稳定,是现在深度学习的主流方法.

    上面的方法都存在一个问题,就是update更新的方向完全依赖于计算出来的梯度.很容易陷入局部最优的马鞍点.能不能改变其走向,又保证原来的梯度方向.就像向量变换一样,我们模拟物理中物体流动的动量概念(惯性).引入Momentum的概念.
  • 2.Momentum

    在更新方向的时候保留之前的方向,增加稳定性而且还有摆脱局部最优的能力\[\Delta w=\alpha \Delta w- \eta \bigtriangledown L(w)\] \[w=w+\Delta w\]

    若当前梯度的方向与历史梯度一致(表明当前样本不太可能为异常点),则会增强这个方向的梯度,若当前梯度与历史梯方向不一致,则梯度会衰减。一种形象的解释是:我们把一个球推下山,球在下坡时积聚动量,在途中变得越来越快,\(\eta\)可视为空气阻力,若球的方向发生变化,则动量会衰减。
  • 3.Adagrad:(adaptive gradient)自适应梯度算法,是一种改进的随机梯度下降算法.
    以前的算法中,每一个参数都使用相同的学习率\(\alpha\). Adagrad算法能够在训练中自动对learning_rate进行调整,出现频率较低参数采用较大的\(\alpha\)更新.出现频率较高的参数采用较小的\(\alpha\)更新.根据描述这个优化方法很适合处理稀疏数据.\[G=\sum ^{t}_{\tau=1}g_{\tau} g_{\tau}^{T}  其中 s.t. g_{\tau}=\bigtriangledown L(w_{i})\] 对角线矩阵\[G_{j,j}=\sum _{\tau=1}^{t} g_{\tau,j\cdot}^{2}\] 这个对角线矩阵的元素代表的是参数的出现频率.每个参数的更新\[w_{j}=w_{j}-\frac{\eta}{\sqrt{G_{j,j}}}g_{j}\]
  • 4.RMSprop:(root mean square propagation)也是一种自适应学习率方法.不同之处在于,Adagrad会累加之前所有的梯度平方,RMProp仅仅是计算对应的平均值.可以缓解Adagrad算法学习率下降较快的问题.\[v(w,t)=\gamma v(w,t-1)+(1-\gamma)(\bigtriangledown L(w_{i}))^{2} ,其中 \gamma 是遗忘因子\]  参数更新\[w=w-\frac{\eta}{\sqrt{v(w,t)}}\bigtriangledown L(w_{i})\]
  • 5.Adam:(adaptive moment estimation)是对RMSProp优化器的更新.利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率.
    优点:每一次迭代学习率都有一个明确的范围,使得参数变化很平稳.
    \[m_{w}^{t+1}=\beta_{1}m_{w}^{t}+(1-\beta_{1}) \bigtriangledown L^{t} ,m为一阶矩估计\]
    \[v_{w}^{t+1}=\beta_{2}m_{w}^{t}+(1-\beta_{2}) (\bigtriangledown L^{t})^{2},v为二阶矩估计\]
    \[\hat{m}_{w}=\frac{m_{w}^{t+1}}{1-\beta_{1}^{t+1}},估计校正,实现无偏估计\]
    \[\hat{v}_{w}=\frac{v_{w}^{t+1}}{1-\beta_{2}^{t+1}}\]
    \[w^{t+1} \leftarrow=w^{t}-\eta \frac{\hat{m}_{w}}{\sqrt{\hat{v}_{w}}+\epsilon}\]
    Adam是实际学习中最常用的算法

优化方法在实际中的直观体验

1425630-20180917092038787-2101213597.gif

损失曲面的轮廓和不同优化算法的时间演化。 注意基于动量的方法的“过冲”行为,这使得优化看起来像一个滚下山的球

1425630-20180917092153639-1928194678.gif

优化环境中鞍点的可视化,其中沿不同维度的曲率具有不同的符号(一维向上弯曲,另一维向下)。 请注意,SGD很难打破对称性并陷入困境。 相反,诸如RMSprop之类的算法将在鞍座方向上看到非常低的梯度。 由于RMSprop更新中的分母术语,这将提高此方向的有效学习率,从而帮助RMSProp继续进行.
参考文献:

转载于:https://www.cnblogs.com/GeekDanny/p/9655597.html

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值