非零环绕数规则和奇-偶规则(Non-Zero Winding Number Rule&&Odd-even Rule)

在图形学中,判断点是否在多边形内部时,对于非自相交多边形可以直接划分内外,而对于自相交多边形则需要运用非零环绕数规则和奇-偶规则。奇-偶规则通过射线与边相交的次数判断,奇数次在内,偶数次在外。非零环绕数规则计算穿过射线的边带来的环绕数,非零值表示点在多边形内。iPhone中CGContextClip和CGContextEOClip分别运用这两种规则进行路径裁剪。
摘要由CSDN通过智能技术生成

参考

[1]http://www.cs.rit.edu/~icss571/filling/alt_parity.html

[2]http://cs.hust.edu.cn/webroot/courses/csgraphics/jiaocai.php?bookpage=5_c_c

[3]http://en.wikipedia.org/wiki/Nonzero-rule


在图形学中判断一个点是否在多边形内,若多边形不是自相交的,那么可以简单的判断这个点在多边形内部还是外部;若多边形是自相交的,那么就需要根据非零环绕数规则和奇-偶规则判断。

判断多边形是否是自相交的:多边形在平面内除顶点外

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值