\[Description\]
Protoss 的灵能矩阵由若干个节点所构成。它们构成了一棵有根树,树根为1 号节点。定义没有子节点的节点为叶节点。叶节点内储存着一定量的能量,而非叶节点的能量为它子树中所有叶节点的能量之和。
如果一个节点的每一个子节点的能量都相同,那么这个节点就是能量平衡的。如果矩阵内每一个节点都能量平衡,则这个矩阵是能量平衡的。
被你所接管的这个灵能矩阵,似乎在长期的废弃之后已经无法保持的能量的平衡。为了重新让矩阵平衡,你可以通过将叶节点储存的能量散逸到太空中。你不可以使一个叶节点储存的能量为负数。
你希望求出最少散逸多少能量到太空中就能使灵能矩阵的能量平衡。
\[Input/Output\]
第一行包含一个整数n,表示节点的数量。
接下来一行,包含A1,A2...An 这n 个非负整数,表示每个节点自身储存的能量。保证储存能量的节点都是叶节点。
接下来n -1 行,每行包含两个数字Si, Ti,描述一条从Si 号节点到Ti 号节点的边。
第一行包含一个整数,表示最少要散逸多少单位的能量才能使灵能矩阵的能量平衡。
\[Sample\]
6
0 0 12 13 5 6
1 2
1 3
1 4
2 5
2 6
6
\[Data\ Constraint\]
对于 \(100\)% 的数据,\(1 \leq n \leq 10^5\),\(A_i \leq 2^{30}\)。
考虑到一种图,可以把正常的贪心卡掉:
我们如果让 \(8 -> 7\) 的话,那么它的儿子就会非常的尴尬。
这时我们考虑一个 \(lim_x\) 代表当这个点为 \(lim_x\) 的倍数的值时,可以让子树平衡。我们设 \(size_x\) 为 \(x\) 的儿子的个数。
\[lim_x=size_x \times lcm \{ lim_{son} \}\]
如:
而 \(val_{son}\) 的值就应该是:
\[val_{son} = min\{ val_{son} \}-min\{ val_{son} \} \mod lcm\{ lim_{son} \}\]
上面的算式比较显然,我要满足它可以分配成 \(lim_x\),所以就用最小的变为可以分配的(让 \(min\{ val_{son}\}\) 变为可以被 \(lcm\{ lim_{son} \}\) 整除的)。
所以 \(x\) 的值就是:
\[val_x=val_{son} \times size_x\]
不开 \(int_{64}\) 见祖宗。
时间复杂度 \(O(N \log \sqrt{N})\)
// T3
Uses math;
var
next,reach:array[-1..810000] of longint;
cnt,lim:array[-1..810000] of longint;
val:array[-1..810000] of int64;
i,j,x,y,n,tot,root:longint;
ans:int64;
procedure add(l,r:longint);
begin inc(tot); reach[tot]:=r; next[tot]:=cnt[l]; cnt[l]:=tot;
end;
function gcd(x,y:longint):longint;
begin if x mod y<>0 then exit(gcd(y,x mod y)) else exit(y);
end;
function lcm(x,y:longint):longint;
begin exit(x*y div gcd(x,y));
end;
procedure Dfs(x,fa:longint);
var
minn,sum,shou:int64;
i,size:longint;
begin
minn:=maxlongint*843; sum:=0; size:=0;
i:=cnt[x];
while i<>-1 do
begin
if reach[i]<>fa then
begin
inc(sum,val[reach[i]]);
Dfs(reach[i],x); inc(size);
minn:=min(minn,val[reach[i]]);
lim[x]:=lcm(lim[x],lim[reach[i]]);
end;
i:=next[i];
end;
if size=0 then exit;
shou:=minn-minn mod lim[x];
val[x]:=shou*size;
lim[x]:=lim[x]*size;
inc(ans,sum-val[x]);
end;
begin
assign(input,'pylon.in'); reset(input);
assign(output,'pylon.out'); rewrite(output);
filldword(cnt,sizeof(cnt) div 4,maxlongint*2+1);
read(n); root:=1; ans:=0;
for i:=1 to n do begin read(val[i]); lim[i]:=1; end;
for i:=1 to n-1 do begin read(x,y); add(x,y); add(y,x); end;
Dfs(root,root); writeln(ans);
close(input); close(output);
end.