tsp的理论和实践(8)派件时间窗和held-karp动态规划

本文探讨了在TSP问题中处理派件时间窗的挑战,强调了配送效率的重要性。文章分析了各种算法,如线性规划、LK交换算法、遗传算法和动态规划,重点介绍了Held-Karp算法,尽管其时间复杂度较高,但在理论上表现优秀。文章介绍了Held-Karp算法的编码规则和步骤,讨论了数据结构的设计,并提出了适用于动态规划的索引策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tsp领域的问题, 并不都是tsp问题, 但是, tsp相关的算法一般都能解决, 只要你能为某一个充满个性的问题儿子找到他亲生的解决方案爸爸.

经过前面7篇的努力, 我们实际上已经解决了订单分配问题, 因为派件时间窗其实不是一个分配问题. 下面我们详细分析一下

需求概述
  1. 某样物品, 客户要求在下午4:00前收到.
  2. 某样物品, 客户要求在中午12:00前收到.
分析
  • 这些其实并不是需求, 原因是: 我们无法保证满足, 除非用类似无人机这样的设备, 直接空投过去. 不然, 受各种因素干扰, 我们一般情况下只能说, 预计某一天到达. 快递的目标就是把这个某一天尽量提前, 比如全球次日达.
  • 然后, 当单量上升到一定地步的时候, 我们可以把工作时间段逐步拆碎, 比如每天分成3段, 这个货预计上午9:00-12:00到. 单量再上升, 甚至可以半个小时一段. 比如配餐服务.
  • 如果客人一定要求我们更快速配送, 比如支付很多费用, 那么可以通过路线调整来满足.
  • 但是, 实际上配送效率还是我们服务的整体质量中最核心的内容, 因此, 我们应该针对所有客户给一个相当快的配送效率, 而不是针对某些客户提供付费服务.
结论
  • 我们应该提供更高效的服务.
  • 比如当日达, 我们要保证当日能到达, 并且当日能让尽量多的订单到达.
  • 由此, 线路规划还是非常有用的. 而且有与实际工作中我们的订单有诸多的限制, 因此, 这个线路规划不能使用生成类方法比如:
    • 插入类算法, 如: 最远插入法…...
    • 生成树类算法, 包括christofides
  • 可以使用尝试类算法例如
    • 线性规划LP
    • LK交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值