python day11


一、线程
        基本使用
        线程锁
        自定义线程池
       
        生产者消费者模型(队列)
二、进程
        基本使用
        进程锁
        进程数据共享
            默认数据不共享
            queues
            array
            Manager.dict
        进程池
   
    PS:
        IO密集型-多线程
        计算密集型 - 多进程
   
三、协程
        原理:利用一个线程,分解一个线程成为多个“微线程”==》程序级别
        greenlet
       
        gevent
       
        pip3 install gevent
四、缓存
        1、安装软件
        2、程序:安装其对应的模块
        Socket连接,
        memecach
            1、天生集群
            2、基本
            3、gets,cas
           
            k -> ""
        redis
            k -> ""
            k -> [11,11,22,33,44]
            k -> {"k1":xxx}
            k -> [11,22]
            k -> [(11,1),(13,2),]

 


#使用多线程
import threading
def f1(arg):
    print(arg)
t = threading.Thread(target=f1,args=(123,))
t.start()

 


import threading
from time import ctime,sleep
import time
def music(func):
    for i in range(2):
        print("我在听--------- %s. %s" %(func,ctime()))
        time.sleep(1)

def move(func):
    for i in range(2):
        print("我在看---------- %s! %s" %(func,ctime()))
        time.sleep(5)

threads = []
t1 = threading.Thread(target=music,args=(u'爱情买卖',))  #把music加入到多线程
t2 = threading.Thread(target=move,args=(u'阿凡达',))     #把move加入到多线程
threads.append(t1)
threads.append(t2)

for i in threads:
    i.start()

 

 


import threading
from time import ctime,sleep
import time
def music(func):
    for i in range(2):
        print("我在听--------- %s. %s" %(func,ctime()))
        #time.sleep(1)

def move(func):
    for i in range(2):
        print("我在看---------- %s! %s" %(func,ctime()))
        #time.sleep(5)

t1 = threading.Thread(target=music,args=(u'爱情买卖',))  #把music加入到多线程
t2 = threading.Thread(target=move,args=(u'阿凡达',))     #把move加入到多线程
t1.start()
sleep(2)
t2.start()

 

同时做两件事
#听歌看片一起干,想要干两次,此程序只干一次,因为setDaemon不等子线程
import threading
from time import ctime,sleep
def music(func):
    for i in range(2):
        print("我在听-------- %s. %s" %(func,ctime()))
        sleep(1)

def move(func):
    for i in range(2):
        print("我在看-------- %s! %s" %(func,ctime()))
        sleep(5)

threads = []
t1 = threading.Thread(target=music,args=(u'爱情买卖',))  #把music加入到多线程
threads.append(t1)
t2 = threading.Thread(target=move,args=(u'阿凡达',))     #把move加入到多线程
threads.append(t2)

if __name__ == '__main__':
    for t in threads:
        t.setDaemon(True)       #子线程启动后,父线程也继续执行下去,当父线程执行完最后一条语句print "all over %s" %ctime()后,没有等待子线程,直接就退出了,同时子线程也一同结束。
        t.start()               #开始启动线程
    print("两件事同时做完----------- %s" %ctime())

 

 

多线程完整程序,同时听了歌又看了片
import threading
from time import ctime,sleep
def music(func):
    for i in range(2):
        print("我在听---------- to %s. %s" %(func,ctime()))
        sleep(1)
def move(func):
    for i in range(2):
        print("我在看---------- to %s! %s" %(func,ctime()))
        sleep(5)
threads = []
t1 = threading.Thread(target=music,args=(u'牛逼存在',))
threads.append(t1)
t2 = threading.Thread(target=move,args=(u'钟馗伏魔',))
threads.append(t2)
if __name__ == '__main__':
    for t in threads:
        t.setDaemon(True)
        t.start()
    t.join()        #等待进程终止,子程进程没有运行完,就不执行父进程
    print("所有结束--------------------- %s" %ctime())

 

# 结果
我在听---------- to 牛逼存在. Mon Jul 18 00:18:22 2016
我在看---------- to 钟馗伏魔! Mon Jul 18 00:18:22 2016
我在听---------- to 牛逼存在. Mon Jul 18 00:18:23 2016
我在看---------- to 钟馗伏魔! Mon Jul 18 00:18:27 2016
所有结束--------------------- Mon Jul 18 00:18:32 2016

 

 

 

#自定义多线程,调用
import threading
class MyThread(threading.Thread):
    def __init__(self,func,args):
        self.func = func
        self.args = args
        super(MyThread,self).__init__()          #super继承调用父类,解决多继承的重复调用问题
    def run(self):                            # 自动执行run方法
        self.func(self.args)
def f2(arg):
    print(arg)
obj = MyThread(f2,123)
obj.start()

 

#结果
123

 

 

 

 

消息队列

# queue.Queue(2) 先进先出队列
# put放数据,是否阻塞,阻塞时的超时事件
# get取数据(默认阻塞),是否阻塞,阻塞时的超时事件
# qsize()真实个数
# maxsize 最大支持的个数
# join,task_done,阻塞进程,当队列中任务执行完毕之后,不再阻塞
 
q = queue.Queue(2)                       #只接收两个队列
print(q.empty())
q.put(11)
q.put(22)
print(q.empty())
print(q.qsize())
q.put(22)
q.put(33, block=False)
q.put(33,block=False, timeout=2)
print(q.get())
print(q.get())
print(q.get(timeout=2))

 

----结果
True
False
2                    # 阻塞了,只接收了两个

 

 

 


import queue
# queue.Queue,先进先出队列
# queue.LifoQueue,后进先出队列
# queue.PriorityQueue,优先级队列
# queue.deque,双向对队

#后进先出队列
q = queue.LifoQueue()
q.put(123)                #放数据给队列
q.put(456)
print(q.get())            #取一条数据
print(q.get())            #取第二条数据


# #优先级队列
    #数值小的高
q = queue.PriorityQueue()
q.put((1,"alex1"))      #存数据给队列,优化级为1
q.put((1,"alex2"))
q.put((1,"alex3"))
q.put((3,"alex3"))
print(q.get())           #取数据

#双向对队
q = queue.deque()
q.append(123)
q.append(333)
q.appendleft(456)
q.pop()
q.popleft()

 

 

 

队列机制

import queue

queue.Queue #先进先出队列
queue.LifoQueue  #后队进先出队列
queue.PriorityQueue #优先级队列
queue.deque #双向对队

q = queue.LifoQueue()
q.put(123)
q.put(456)
print(q.get())

q = queue.PriorityQueue()
q.put((1,"alex1"))
q.put((1,"alex2"))
q.put((1,"alex3"))
q.put((3,"alex3"))
print(q.get())

q = queue.deque()
q.append(123)
q.append(333)
q.appendleft(456)
q.pop()
q.popleft()

 

 

 


生产者消费者
消息队列解决供给问题,解决阻塞,解耦

import queue
import threading
import time

q = queue.Queue()                      #先进先出队列

def productor(arg):                      # 生产者
    """
    买票
    :param arg:
    :return:
    """
    q.put(str(arg) + '-包子')         #发包子器

for i in range(300):                  #300个人买包子
    t = threading.Thread(target=productor,args=(i,))
    t.start()

def consumer(arg):                     # 消费者
    """
    服务器后台
    :param arg:
    :return:
    """
    while True:                         #无限生产
        print(arg,q.get())          
        time.sleep(2)
for j in range(3):                     #3个人一直生产       
    t = threading.Thread(target=consumer,args=(j,))
    t.start()

 

 


   
   
# 线程锁

#  threading.RLock和threading.Lock


# threading.Lock   产生死锁阻塞
import threading 
lock = threading.Lock() #Lock对象 
lock.acquire() 
lock.acquire()     #产生了死锁。 
lock.release() 
lock.release() 

-----结果
            #一直循环不退出,因为锁住了
           
# threading.RLock          #在同一线程内,程序不会堵塞。
import threading
rLock = threading.RLock()  #RLock对象
rLock.acquire()
rLock.acquire()            #在同一线程内,程序不会堵塞。
rLock.release()
rLock.release()

-----结果
Process finished with exit code 0      #不阻塞

 

# 上锁和解锁,递归10减到0   
import threading
import time

NUM = 10

def func(l):
    global NUM
    # 上锁
    l.acquire()
    NUM -= 1
    time.sleep(2)
    print(NUM)
    # 开锁
    l.release()
#lock = threading.Lock()
lock = threading.RLock()      

for i in range(10):
    t = threading.Thread(target=func,args=(lock,))
    t.start()


   
-----结果

 

全锁,全放

#红灯停,绿灯放行
import threading

def func(i,e):
    print(i)
    e.wait() # 检测是什么灯,如果是红灯,停;绿灯,行
    print(i+100)

event = threading.Event()

for i in range(10):
    t = threading.Thread(target=func, args=(i,event,))
    t.start()
#========
event.clear() # 设置成红灯
inp = input('>>>')
if inp == "1":                   #输入1放行
    event.set() # 设置成绿灯  

   
   
   
------结果
0
1
2
3
4
5
6
7
8
9
>>>1
100
103
104
107
108
101
102
105
106
109

 

 

 


信号量,放几个出去
import threading
import time
NUM = 10

def func(i,l):
    global NUM
    # 上锁
    l.acquire()
    NUM -= 1
    time.sleep(2)
    print(NUM,i)
    # 开锁
    l.release()
#lock = threading.Lock()
#lock = threading.RLock()
lock = threading.BoundedSemaphore(5)   #信号量,放几个出去

for i in range(10):
    t = threading.Thread(target=func,args=(i,lock,))
    t.start()


   
   
   
   
import threading
def func(i,con):
    print(i)
    con.acquire()
    con.wait()
    print(i+100)
    con.release()

c = threading.Condition()
for i in range(10):
    t = threading.Thread(target=func, args=(i,c,))
    t.start()

while True:
    inp = input('>>>')
    if inp == 'q':
        break
    c.acquire()
    c.notify(int(inp))
    c.release()
   

   
   
   
import threading

def condition():
    ret = False
    r = input('>>>')
    if r == 'true':
        ret = True
    else:
        ret = False
    return ret


def func(i,con):
    print(i)
    con.acquire()
    con.wait_for(condition)
    print(i+100)
    con.release()

c = threading.Condition()
for i in range(10):
    t = threading.Thread(target=func, args=(i,c,))
    t.start()

   
   
   
   
   
   
# 1秒之后打印hello world
from threading import Timer
def hello():
    print("hello, world")

t = Timer(1, hello)      #1秒之后打印hello world
t.start()  # after 1 seconds, "hello, world" will be print

   
   
   
   
   
   
#线程池程序

import queue
import threading
import contextlib
import time

StopEvent = object()                                        #配置空值,判断空值终止线程

class ThreadPool(object):

    def __init__(self, max_num, max_task_num = None):      #配置最大线程数和任务最大个数
        """
        初始化函数做三件事:
        1.判断任务最大数是否为真,真则创建队列存任务,假则创建不受限制队列
        2.创建当前已经创建的线程变量
        3.创建当前空闲多少线程变量
        """
        if max_task_num:
            self.q = queue.Queue(max_task_num)             #创建队列,用来装任务
        else:
            self.q = queue.Queue()
        self.max_num = max_num
        self.cancel = False
        self.terminal = False
        self.generate_list = []                            #当前已经创建的线程
        self.free_list = []                                   #当前空闲多少线程

    def run(self, func, args, callback=None):
        """
        线程池执行一个任务
        :param func: 任务函数
        :param args: 任务函数所需参数
        :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数)
        :return: 如果线程池已经终止,则返回True否则None
        """
        if self.cancel:
            return
        if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:      #判断没有空闲线程和已经创建的线程小于线程池最大数,则创建线程
            self.generate_thread()     # 创建线程
        w = (func, args, callback,)    # 以下两行把任务放入队列   #FUNC 是函数 ARGS、CALLBACK是元组
        self.q.put(w)

    def generate_thread(self):
        """
        创建一个线程
        """
        t = threading.Thread(target=self.call)             #创建线程执行call方法(用call方法创建线程),每创建一个线程都执行call
        t.start()

    def call(self):
        """
        循环去获取任务函数并执行任务函数
        """
        current_thread = threading.currentThread
        self.generate_list.append(current_thread)       #获取已创建的线程存入列表

        event = self.q.get()                            #取任务

        while event != StopEvent:
            '''如果获取的任务不为空,则执行改变其状态,循环配置每个任务为空闲,否则传入的是空值,则清除线程列表'''
            func, arguments, callback = event              #是元组event即任务便执行
            try:
                result = func(*arguments)                 #传参,执行ACTION函数,ACTION执行完是空闲
                success = True
            except Exception as e:
                success = False
                result = None

            if callback is not None:
                try:
                    callback(success, result)
                except Exception as e:
                    pass

            with self.worker_state(self.free_list, current_thread):    #如果执行ACTION,把任务设置成空闲
                if self.terminal:
                    event = StopEvent
                else:
                    event = self.q.get()
        else:

            self.generate_list.remove(current_thread)

    def close(self):
        """
        执行完所有的任务后,所有线程停止
        """
        self.cancel = True
        full_size = len(self.generate_list)
        while full_size:
            self.q.put(StopEvent)
            full_size -= 1

    def terminate(self):
        """
        无论是否还有任务,终止线程
        """
        self.terminal = True

        while self.generate_list:
            self.q.put(StopEvent)        # 终止前存入队列

        self.q.empty()


    '''以下用contextlib装饰器模块为记录正在等待的线程数,用于call方法把了队列全部读出来,即实现装饰器为空'''
    @contextlib.contextmanager                                #contoextlib上下文管理,实现类似with的自动关闭机制,其实就是个with封装
    def worker_state(self, state_list, worker_thread):
        """
        用于记录线程中正在等待的线程数
        """
        state_list.append(worker_thread) 
        try:
            yield
        finally:
            state_list.remove(worker_thread)


pool = ThreadPool(5)                                #创建线程池

def callback(status, result):
    # status, execute action status
    # result, execute action return value
    pass


# 创建一个读任务函数
def action(i):
    print(i)

for i in range(300):                                  #300个任务
    ret = pool.run(action, (i,), callback)

# time.sleep(5)
# print(len(pool.generate_list), len(pool.free_list))
# print(len(pool.generate_list), len(pool.free_list))

 

 

 

进程数据共享


from multiprocessing import Process
from multiprocessing import queues
import multiprocessing


def foo(i,arg):                 #定义函数两个选项,用于后续传参
    arg.put(i)                  #定义写队列参数
    print('say hi',i,arg.qsize())      #打印i写入的队列,arg.qsize统计队列数

if __name__=='__main__':
    li = queues.Queue(20,ctx=multiprocessing)    #允许20个队列,使用多进程处理队列
    for i in range(10):                          #循环PUT 10次
        p = Process(target=foo,args=(i,li,))     #多进程方式处理
        p.start()                                #启动多进程

       
       
       
       
进程间数据共享       
# Array来共享数据       
from multiprocessing import Process
from multiprocessing import queues
import multiprocessing
from multiprocessing import Array       

def foo(i,arg):
    # arg.put(i)
    # print('say hi',i,arg.qsize())
    arg[i] = i + 100
    for item in arg:
        print(item)
    print('================')

if __name__ == "__main__":
    # li = []
    # li = queues.Queue(20,ctx=multiprocessing)
    li = Array('i', 10)                             #将10个进程数据存入Array中
    for i in range(10):
        p = Process(target=foo,args=(i,li,))
        #p.daemon = True
        p.start()
        #p.join()

       
       
       

       

from multiprocessing import Process
from multiprocessing import queues
import multiprocessing
from multiprocessing import Manager


def foo(i,arg):
    # arg.put(i)
    # print('say hi',i,arg.qsize())
    # arg[i] = i + 100
    # for item in arg:
    #     print(item)
    # print('====================')
    arg[i] = i + 100
    print(arg.values())

if __name__=="__main__":
    obj = Manager()
    li = obj.dict()
    for i in range(10):
        p = Process(target=foo,args=(i,li,))
        p.start()
        #p.join()
    import time
    time.sleep(0.1)
   
   
   
   
   
   
   
   
   
   
   
from multiprocessing import Process
from multiprocessing import queues
import multiprocessing
from multiprocessing import Manager


def foo(i,arg):
    # arg.put(i)
    # print('say hi',i,arg.qsize())
    # arg[i] = i + 100
    # for item in arg:
    #     print(item)
    # print('====================')
    arg[i] = i + 100
    print(arg.values())

if __name__=="__main__":
    obj = Manager()
    li = obj.dict()
    for i in range(10):
        p = Process(target=foo,args=(i,li,))
        p.start()
        p.join()
    # import time
    # time.sleep(0.1)

 

 


   
串行没有多线程
from multiprocessing import Pool
import time

def f1(arg):
    time.sleep(1)
    print(arg)

if __name__ == "__main__":
    pool =  Pool(5)
    for i in range(30):
        pool.apply(func=f1,args=(i,))
    print('end')

 

 

 

 

五个一起执行
from multiprocessing import Pool
import time

def f1(arg):
    time.sleep(1)
    print(arg)

if __name__ == "__main__":
    pool =  Pool(5)
    for i in range(30):
        #pool.apply(func=f1,args=(i,))
        pool.apply_async(func=f1,args=(i,))      #去队列中取任务

    pool.close()
    pool.join()

   
   
   
   

from multiprocessing import Pool
import time

def f1(arg):
    time.sleep(1)
    print(arg)

if __name__ == "__main__":
    pool =  Pool(5)
    for i in range(30):
        #pool.apply(func=f1,args=(i,))
        pool.apply_async(func=f1,args=(i,))      #去队列中取任务

    time.sleep(2)
    # pool.close()                          #所有的任务执行完毕
    pool.terminate()                      #立即终止
    pool.join()

   
   


协程
安装gevent  (WINDOWS按以下方式安装代替pip3 install gevent)
python3 -m pip install gevent
   
   
   
http://www.cnblogs.com/wupeiqi/articles/5040827.html
看11天图


协程
# 交叉使用,只使用一个线程,在一个线程中规定某个代码块执行顺序。
# 协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;
from greenlet import greenlet


def test1():
    print(12)
    gr2.switch()
    print(34)
    gr2.switch()


def test2():
    print(56)
    gr1.switch()
    print(78)

gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

 

-------结果
12
56
34
78

 

 


协程 :遇到IO操作自动切换
from gevent import monkey; monkey.patch_all()
import gevent
import requests

def f(url):
    print('GET: %s' % url)
    resp = requests.get(url)
    data = resp.text
    print('%d bytes received from %s.' % (len(data), url))

gevent.joinall([
        gevent.spawn(f, 'https://www.python.org/'),
        gevent.spawn(f, 'https://www.yahoo.com/'),
        gevent.spawn(f, 'https://github.com/'),
])

 

 


-------结果
GET: https://www.python.org/
GET: https://www.yahoo.com/
GET: https://github.com/
449397 bytes received from https://www.yahoo.com/.
25533 bytes received from https://github.com/.
47394 bytes received from https://www.python.org/.

 

 

 

 

 

 

 


缓存


# Memcached安装
yum -y install libevent
yum -y install memcached
service memcached start  #可以不用这句,用下面的

# Memcached使用
import memcache
mc = memcache.Client(['172.16.0.2:11211'], debug=True)
mc.set("foo", "bar")
ret = mc.get('foo')
print(ret)

# 启动Memcached
memcached -d -m 10    -u root -l 127.0.0.1 -p 12000 -c 256 -P /tmp/memcached.pid

http://www.cnblogs.com/wupeiqi/articles/5132791.html

转载于:https://www.cnblogs.com/wangminghu/p/5695269.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值