pytorch如何计算平方_Pytorch深度学习入门--2.Tensor数学操作及线性代数运算

本文介绍了PyTorch中常用的数学操作,包括加、减、乘、除等,并通过实例展示了如何对Tensor进行操作。此外,还讲解了线性代数运算,如点积、矩阵与向量乘法和矩阵乘法。最后提到了矩阵的内积、矩阵向量乘法和矩阵乘法的原理。
摘要由CSDN通过智能技术生成

1 常用的数学操作

在pytorch官方文档上,Tensor的数学操作方法有90多种,下图给了经常使用的25种数学操作方法(除线性代数运算外,线性运算下面会介绍)

方法 说明

add() Tensor中每个元素同加一个标量,或与另一个Tensor逐元素相加

mul() Tensor中每个元素同乘一个标量,或与另一个Tensor逐元素相乘

div() Tensor中每个元素同除一个标量,或与另一个Tensor逐元素相除

fmod()和remainder() Tensor中每个元素与一个标量的除法余数,相当于Python中的%操作

abs() 对Tensor中的每个元素取绝对值,并返回

ceil() 对Tensor中的每个元素向上取整

floor() 对Tensor中的每个元素向下取整

clamp() 对Tensor中的每个元素取上下限

round() 对Tensor中的每个元素取最近的整数

frac() 返回Tensor中每个元素的分数部分

neg() 对Tensor中的每个元素取负

reciprocal() 对Tensor中的每个元素取倒数

log() 返回一个张量,包含Tensor中每个元素的自然对数

pow() 对Tensor中的每个元素同取一个标量幂值,或采用另外一个Tensor的对应元素

取幂,或对标量采用Tensor的每个元素取幂

exp() 返回一个张量,包含Tensor中每个元素的指数

sigmoid() 返回一个张量,包含Tensor中的每个元素的sigmoid值

sign() 返回一个张量,包含Tensor中每个元素的正负值

sqrt() 返回一个张量,包含Tensor中每个元素的平方根

dist() 返回两个Tensor的范数

mean() 返回Tensor中所有元素的均值

norm() 返回Tensor的范数值

prod() 返回Tensor的所有元素之积

sum() 返回Tensor的 所有元素之和

max() 返回Tensor的所有元素的最大值

min() 返回Tensor的所有元素的最小值

Tensor的数学操作的实现方法一般由两种:直接用Tensor实例调用数学操作方法;

使用torch库的方法。

下面使用第一种方法,利用其中一个Tensor实例上的方法直接运算

a = torch.Tensor([[1,2,3],[4,5,6]])

a

tensor([[1., 2., 3.],

[4., 5., 6.]])

b = torch.ones(2,3)

b

tensor([[1., 1., 1.],

[1., 1., 1.]])

b.add(a)

tensor([[2., 3., 4.],

[5., 6., 7.]])

使用第二种方法实现加法操作,利用torch包的torch.add()方法:

torch.add(a,b)

tensor([[2., 3., 4.],

[5., 6., 7.]])

这里,我们介绍一下数学操作带下划线,返回值将覆盖对象,例如:

b.add_(a)

tensor([[2., 3., 4.],

[5., 6., 7.]])

b

tensor([[2., 3., 4.],

[5., 6., 7.]])

上列中,张量b与张量a相加的值覆盖张量b.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值