释放QQ占用的C盘空间

  C:\Users\moonwolf\AppData\Roaming\Tencent\Logs,是日志文件,大小为25.2MB,果断清空。
    C:\Users\moonwolf\AppData\Roaming\Tencent\QQ\AuTemp,大小为70.9MB。包含QQ安装文件包、QQ升级补丁包,果断清空。
    C:\Users\moonwolf\AppData\Roaming\Tencent\QQ\PushHead,里面是一些头像文件,大部分是世界杯的球员球星头像,应该是我世界杯用的那个QQ皮肤的头像,占用空间约1MB,果断清空。
    C:\Users\moonwolf\AppData\Roaming\Tencent\QQ\Skins,占用空间5.40MB,是QQ的自定义皮肤和默认皮肤文件。大家可以根据喜好,自我决定删除一些不用的。我果断清空所有自定义皮肤。
    C:\Users\moonwolf\AppData\Roaming\Tencent\QQ\STemp,首先是子文件夹OnlineInstall,是我们在线安装QQ时候安装程序的保存文件夹。大小30.6MB,果断清空。然后是子文件夹QQpinyinDL~0,这个明显是QQ拼音咯。
    C:\Users\moonwolf\AppData\Roaming\Tencent\QQ\Temp,又是一个临时文件夹,里面的东西就五花八门了。com.tencent.gamelife是游戏人生的一些文件。com.tencent.wblog是QQ空间的一些图片。Setup里面是腾讯一些软件的安装文件。还有一些临时图片。乱七八糟的我索性全部删除。大小11.2MB。
    C:\Users\moonwolf\AppData\Roaming\Tencent\QQDownload,QQ下载的文件夹,看看有些什么东西,没有用就清空吧。

QQ音乐、影音相关:
    C:\Users\moonwolf\AppData\Roaming\Tencent\QQMusic\cache,又是QQ音乐的缓存文件。installcache是卸载缓存。musiccache音乐缓存,这个就占了近160MB空间,这个就是有时候我们在线听过的音乐,发现离线情况下也可以听的音乐就缓存在这个文件夹。updatecache升级缓存。WhirlCache这个我就猜不着了,但也是果断清理。接着就是3个版本QQMusic安装文件和相应的ZIP文件,大小42.8MB,真是奢侈。
    C:\Users\moonwolf\AppData\Roaming\Tencent\QQMusic\QQMusicLyric,QQ音乐的歌词文件夹,大小1.15MB。包括很多以前偶尔听过的,我果断清空。
    C:\Users\moonwolf\AppData\Roaming\Tencent\QQMusic\QQMusicPicture,QQ音乐歌曲的图片文件夹。由于我经常用QQ音乐听歌,而且又听那么多哥。这个文件夹的图片是575张,占用空间6.70MB,果断清空。
    C:\Users\moonwolf\AppData\Roaming\Tencent\QQMusic\Temp,是QQ音乐的临时文件夹。里面也是大量的图片包括,QQ音乐经常出现的AD,在播放器下部分的,乐库面板里面的,占用空间3.93MB。
    C:\Users\moonwolf\AppData\Roaming\Tencent\QQPlayer,QQ影音文件夹。还好,没有发现什么垃圾文件。所以这QQ影音是腾讯出品为数不多的好软件,这对暴风影音就是个噩兆。


    C:\Users\moonwolf\AppData\Roaming\Tencent\Users,这是QQ的一个用户文件夹。包括曾经在电脑上登录的一些QQ的信息,我相信除了我自己用的,其余都应该被清理掉,节约空间3.35MB。
    C:\Users\moonwolf\Documents\Tencent Files,每个QQ号码下面的image文件夹包含了聊天的各种图片。由于我的群非常多,里面的图片占用空间19.6MB,还是一星期前清理过的。如果使用QQ过久而不去清理,达到GB也不是没有可能。
    最后,就是压缩下“winsxs”文件夹。这个文件夹占用约5.6GB的空间,但是这个文件夹又不能删除。我们可以通过压缩的方法节约空间。执行这个操作首先要获得系统管理员的权限。接下来,在“winsxs”的文件夹上点右键选择“属性→高级”,并选中“压缩驱动器以便节省磁盘空间”,然后选择“将更改应用于该文件夹、子文件夹和文件”,确定后系统会弹出“将属性应用于……”的窗口,同样,耐心的等待操作完成。期间如果弹出有文件正在使用的提示,选择“全部忽略”即可。压缩结束后再看winsxs文件夹的大小,比未压缩时的磁盘空间占用少了1GB多,可谓效果显著。如果有发现文件夹颜色变成蓝色,纯属正常,请勿惊慌。
    暂时就发现这些地方的垃圾。闲着没事又烦恼系统盘空间紧缺的筒子,可以参考着清理。但是,以上清理仅供参考。如果发生意外情况,出现错误,那就只好麻烦你重新装下QQ了。

转载于:https://www.cnblogs.com/jeakon/archive/2013/02/19/2917584.html

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值