[AAAI 2014] Supervised Hashing via Image Representation Learning [paper] [code]
Rongkai Xia , Yan Pan, Hanjiang Lai, Cong Liu, Shuicheng Yan.
1. Overcome
之前的哈希方法,大都使用手工的图像特征(如GIST等)作为图像的特征表达, 但是这些手工特征是采用无监督的方式提取的,难以很好得保存原始图片的语义信息。而深度深度神经网络可以很好得表达图像特征信息,因此作者便提出了基于深度的哈希检索方法——CNNH。
2. Contribute
- 第一个采用深度神经网络解决哈希检索问题;
- 采用coordinate descent method学习数据集的近似哈希编码,效率高,计算速度快;
- 在学习哈希函数的同时可以得到图像的特征表达。
3. Algorithm
论文中,作者提出了一种监督哈希方法——CNNH,可以同时学习到图像的特征表达以及哈希函数。
CNNH具有两个阶段,Stage 1将相似矩阵分解为低维的哈希矩阵H,得到每个