bzoj3209: 花神的数论题

Description

背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。

Input

一个正整数 N。

Output

一个数,答案模 10000007 的值。

Sample Input

3

Sample Output

2

HINT

对于样例一,1*1*2=2;

数据范围与约定

对于 100% 的数据,N≤10^15

题解

假设二进制中有\(i\)个1的数的个数为\(s[i]\),那么答案显然是\(\prod i^{s[i]}\)

\(s[i]\)直接数位\(DP\)就行了。

代码

#include<bits/stdc++.h>
#define MAXN 65
#define LL long long
#define P 10000007
using namespace std;
LL f[MAXN][MAXN],c[MAXN][MAXN],N,cnt,ans=1;
bool bit[MAXN];
LL qp(LL x,LL y){
    LL ret=1;
    while(y){
        if(y&1)ret=ret*x%P;
        x=x*x%P;y>>=1;
    }
    return ret;
}
LL Solve(LL x){//有x个1的数的个数 
    LL ret=0;
    for(int i=cnt;i>=1;i--){
        if(bit[i]){
            ret+=c[i-1][x];
            x--;
        }
        if(x<0)break;
    }
    return ret;
    
}
int main(){
    #ifndef ONLINE_JUDGE
    freopen("bzoj3209.in","r",stdin);
    freopen("bzoj3209.out","w",stdout);
    #endif
    c[0][0]=1;
    for(int i=1;i<=64;i++){
        c[i][0]=c[i][i]=1;
        for(int j=1;j<i;j++){
            c[i][j]=c[i-1][j]+c[i-1][j-1];
        }
    }
    scanf("%lld",&N);
    N++;
    while(N){
        bit[++cnt]=(N&1);
        N>>=1;
    }
    for(int i=1;i<=cnt;i++)ans=ans*qp(i,Solve(i))%P;
    printf("%lld",ans);
    return 0;
}

转载于:https://www.cnblogs.com/lrj998244353/p/8829985.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值