这些文章可以使知识融会贯通

本文探讨了WordEmbedding技术中word2vec模型及其与PMI分解的关系,强调了离散分布假设在词向量生成中的核心作用。通过对比skip-gram与CBOW两种方法,阐述了相似词拥有相似上下文的理论基础。
摘要由CSDN通过智能技术生成

Word embedding综述与回顾(之一)---word2vec模型与PMI分解

“skip-gram和CBOW, 其基本思想是一个词的意思, 可以由这个词的上下文来表示。 相似词拥有相似的上下文, 这也就是所谓的离散分布假设(distributional hypothesis)。”

这句话,让我想起协同过滤思想,“相似的用户,会拥有相似的行为",但是个体的特性又如何体现?

转载于:https://www.cnblogs.com/hugh2006/p/10150715.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值