最近项目中需要研究了一下有向图的环路问题。一个IT企业中有成千上万个应用,各个应用之间都是相互依赖的,一个用户请求进来后,会调用一系列应用,比如A调B、B调C、C调D等。这样所有的应用形成一个有向图,那么如果这个有向图中出现了环路,就悲剧了,用户的请求如果进入这个环路,那么他永远也得不到响应。所以就有需要去判断这个应用组成的有向图中是否含有环路,如果有就要打印出所有的环路,想办法将这些环路拆解。
说简单了,就是算法中的一个简单问题,在有向图中找到所有的环路。请教了宿舍的算法高手just,加上我自己的理解,产生了一些思路:
1.DFS树,找所有后退边
首先将有向图转化为一颗DFS树,如果碰到后退边,那么肯定存在环,打印之。那么实现的时候利用深度搜索维护一个节点是否被访问的数组visited[],如果搜索到已经被访问过的节点,那么就是一条环。这个可以过滤掉交叉边的情况,因为交叉边的节点还未被访问。搜索的路径用栈来维护,这样方便打印。为了方便,用java实现:
import java.util.ArrayList;
public class test {
static private final int POINT_NUM = 9;
static private int[] visited={0,0,0,0,0,0,0,0,0};
static private int[][] e={
{0,0,0,0,0,0,0,0,1},
{0,0,0,1,1,0,0,0,0},
{1,0,0,0,0,0,0,0,0},</