幂级数求和

Let a power series $$S(x)=\sum_{n=1}^{\infty}\frac{x^{n}}{4n+1},$$ then $1$ is the radius of convergence of $S$ .In fact $S(x)$ convergens for each $x\in[-1,1).$ My work is to find a closed form of this power series.$\\$

The following is my solution: $$S(x)=\sum_{n=1}^{\infty}\frac{(4n+1)x^{n}-4nx^{n}}{4n+1}=\sum_{n=1}^{\infty}x^{n}-4x\sum_{n=1}^{\infty}(\frac{x^{n}}{4n+1})^{'}.$$then we have $$S(x)+4x S^{'}(x)=\frac{x}{1-x}.(\text{a first-order linear differential equation })\Rightarrow $$ $$\mathbf{A.}\quad S(x)=\frac{1}{x^{\frac{1}{4}}}[C_{1}+\frac{\ln(1+x^{\frac{1}{4}})+2\arctan(x^{\frac{1}{4}})-\ln(1-x^{\frac{1}{4}})-4x^{\frac{1}{4}}}{4}](1>x>0);$$$$\mathbf{B.}\quad S(x)=-\frac{1}{8(-x)^{\frac{1}{4}}}\begin{Bmatrix} C_{2}+8(-x)^{\frac{1}{4}}\\+2\sqrt{2}\arctan[1-\sqrt{2}(-x)^{\frac{1}{4}}]\\-2\sqrt{2}\arctan[1+\sqrt{2}(-x)^{\frac{1}{4}}]\\+ \sqrt{2}\ln[1-\sqrt{2}(-x)^{\frac{1}{4}}+\sqrt{-x}]\\-\sqrt{2}\ln[1+\sqrt{2}(-x)^{\frac{1}{4}}+\sqrt{-x}] \end{Bmatrix}\quad(-1\leq x<0).$$ Since $S(0)=0$ and $S(x)$ is continuous at $x=0$ , I conclude that $C_{1}=C_{2}=0.\diamondsuit$

转载于:https://www.cnblogs.com/cardioid2012/p/4695485.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值