为了能够更好地帮助大家理解何为幂级数的和函数,小编在本文将结合一道考研数学真题来讲述。
1.幂级数和函数考研真题
下面这道题是2016年考研数学三真题:
小编对真题稍加修改,大家看看是否会影响解题过程和步骤。
可能很多同学会认为真题是需要大家求出两个东西,一是收敛域,二是和函数。而小编修改后的真题,只需要求和函数,不用求收敛域了。那么事实真的是这样的吗?
2.什么是幂级数的和函数?
不妨以自然指数的泰勒展开式进行说明。
为了能够更清晰地说明什么是和函数,小编在上式的基础上进行些许改变,如下所示:
当化简到此,就能明显看出来。当等式右边的极限存在时,上述等式才成立。也就是说,对于变量x的某个特定的值,如果等式右边的极限存在,则上述等式成立。
扩展到x的一段取值区间(-∞,+∞)。对于这段区间内的任何一个x值,等式右边的极限都存在,此时:
通过上面这个例子可以看出,讨论幂级数的和函数,必须是基于幂级数的收敛域。因此对于第1节中的问题,答案是两个题目是一样的,都是求和函数,而收敛域是和函数的组成部分。也就是说求和函数,必须要求收敛域。真题之所以要把收敛域明确列出来,目的无外乎是两个:一是提醒大家不要忘记标明幂级数的收敛域,二是给予幂级数的收敛域问题更多的分值。
3.逐项求导和逐项积分
逐项求导和逐项积分是求幂级数和函数过程中经常需要用到的概念。那何为逐项求导,何为逐项积分呢?又为何需要逐项求导、逐项积分呢?
所谓的逐项求导、逐项积分就是对函数项幂级数的每一项进行求导或求积分。
小编通过下面两个例子来说明。
逐项求导可能会缩小收敛域,但不会扩大收敛域;逐项积分可能会扩大收敛域,但不会缩小收敛域。而收敛域缩小和扩大的部分只可能是出现在级数收敛域的两侧端点。
请看下面逐项求导会缩小收敛域的例子:
同样,将上述例子反过来,就是一个逐项积分扩大收敛域的典型例子。
那么逐项求导、逐项积分的目的是什么?
目的是向常见函数的泰勒展开式靠拢!下面小编通过求解考研真题向大家说明这一点。
4.求解真题
对于第1节中的考研真题,首先求收敛域。
对于既可看作缺项幂级数,亦可看作无缺项幂级数,通常采用比值审敛法求解幂级数的收敛域。具体求解过程如下所示:
在求得幂级数收敛域后,下一步就是求和函数S(x)。
观察级数的形式,不难发现应采用逐项求导的方法,具体过程如下:
当进行到上面这一步时,可能很多人都认为,只需要把原级数收敛域写在S(x)后面就算解答完了,即:
看出来了吗?上面的S(x)取不到点x=-1和x=1,因此本题还没有解答完!
所以,接下来要考虑的是,当x=-1和x=1时,原级数将收敛于何值。具体解答过程如下:
因此原级数的和函数为:
5.求解幂级数和函数通用步骤
小编将求解幂级数和函数的通用步骤绘制成图1,大家一定要结合第4 节中考研真题的求解来理解。
图1.求解幂级数和函数的通用步骤
求解一个幂级数的和函数,先求收敛域,此时根据幂级数是否缺项采用相应的定理进行求解,缺项用比值审敛法;无缺项用收敛半径公式。
第二步就S(x),在次过程中,核心是向常见函数的泰勒展开式靠拢。有的幂级数可能直接就是常见函数的幂级数,此时可直接求得。对于复杂的幂级数,可以通过逐项求导或逐项积分的方法向常见函数的泰勒展开式进行靠拢。若是采用的逐项求导,需对最后求出的S(x)对收敛域端点进行分析。