两个列向量相乘怎么计算_向量、矩阵和张量的导数

本文详细介绍了向量、矩阵和张量的导数计算,包括列向量相乘的处理、行向量的理解、超过二维情况的处理、多数据点的应用以及链式法则在向量和矩阵中的应用。通过实例解析,帮助读者掌握求导的技巧和雅克比矩阵的概念。
摘要由CSDN通过智能技术生成

31ea80d006930439c8225ca045f71da9.png

原文: http://cs231n.stanford.edu/vecDerivs.pdf

本文让大家更好地学习使用向量、矩阵和高阶张量的求导。

1 简化,简化再简化

很多关于数组的求导的困惑来自于一次性想做太多事。这些事包括同时对多个部分求导,和式的求导,和应用链式法则。同时做这么多事情,至少在我们还没有足够熟练之前,那就很容易会出现错误。

1.1 对每个部分展开式子成显式求和及等式

为了简化一个给定的计算,通常将对于输出的一个简单的标量元素使用标量变量展开成显式公式。一旦我们对于输出的单个标量元素有了一个显式的用其他标量值表达的公式后,我们可以利用基本的微积分知识进行求导了,这里就避免将复杂的矩阵数学,求和及求导同时进行了。

例子. 假设我们有一个列向量

其长度为

1.2.1 雅克比(Jaccobian)矩阵

我们最初的愿望是计算

每个部分关于
的每个部分的导数,注意到会有
这么多对。他们可以被写成一个矩阵,形如:

这个矩阵被成为雅克比矩阵。

注意到对于等式:

关于
的偏导数就是
。如果你观察一些其他的部分,你也能发现,对于所有的
.

这意味着偏导数的矩阵为:

所以,其实就是

本身。

我们现在可以给出结论:对于

,我们有
.

2 行向量

在使用不同的神经网络库的时候需要慎重对待权重矩阵、数据矩阵等的排列。例如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值