【题目链接】 UVA11990
【题目大意】
给出一个数列,每次删去一个数,求一个数删去之前整个数列的逆序对数。
【题解】
一开始可以用树状数组统计出现的逆序对数量
对于每个删去的数,我们可以用线段树求出它在原序列中的逆序对贡献
在线段树的每个区间有序化数据,就可以二分查找出这个数在每个区间的位置,
这样就处理出了划分出的区间的贡献,先用答案减去这一部分
接下来考虑已经删去部分的容斥,我们发现只要对删去部分再做一次类似的操作,
将这一部分跟当前删去数求一次贡献就是刚才多减去的部分,将这部分的答案再加回去。
这个可以在线段树上查找的同时用树状数组维护。
这样子就能处理每一次的删数操作了。
【代码】
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=200010;
int n,m,c[30][N],a[30][N],arr[N],id[N];
long long ans;
void add(int c[],int x,int v,int n){while(x<=n)c[x]+=v,x+=x&-x;}
int sum(int c[],int x,int n=0){int s=0;while(x>n)s+=c[x],x-=x&-x;return s;}
void build(int x,int l,int r,int d){
int mid=(l+r)>>1;
for(int i=l;i<=r;i++)a[d][i]=a[d-1][i],c[d][i]=0;
if(l==r)return;
build(x<<1,l,mid,d+1);
build(x<<1|1,mid+1,r,d+1);
sort(a[d]+l,a[d]+r+1);
}
int find(int L,int R,int d,int v){
int l=L,r=R;
while(l<r){
int mid=(l+r)>>1;
if(a[d][mid]>=v)r=mid;
else l=mid+1;
}if(a[d][l]>v)l--;
return l;
}
void query(int x,int l,int r,int L,int R,int v,int d,int f){
int mid=(l+r)>>1;
if(L<=l&&r<=R){
int k=find(l,r,d,v),t=sum(c[d],k,l-1);
if(!f){k=r-k;t=sum(c[d],r,l-1)-t;}
else k-=l-1;
ans-=k-t; return;
}if(l>=r)return;
if(L<=mid)query(x<<1,l,mid,L,R,v,d+1,f);
if(R>mid)query(x<<1|1,mid+1,r,L,R,v,d+1,f);
}
void update(int x,int l,int r,int s,int v,int d){
int mid=(l+r)>>1;
if(l==r){add(c[d],l,1,r);return;}
if(l>=r)return;
if(s<=mid)update(x<<1,l,mid,s,v,d+1);
else update(x<<1|1,mid+1,r,s,v,d+1);
int k=find(l,r,d,v);
add(c[d],k,1,r);
}
int main(){
while(~scanf("%d%d",&n,&m)){
ans=0; memset(arr,0,sizeof(arr));
for(int i=1;i<=n;i++){
scanf("%d",&a[0][i]); id[a[0][i]]=i;
ans+=i-1-sum(arr,a[0][i]);
add(arr,a[0][i],1,n);
}build(1,1,n,1);
while(m--){
int k;
scanf("%d",&k);
printf("%lld\n",ans);
if(ans){
query(1,1,n,1,id[k]-1,k,1,0);
query(1,1,n,id[k]+1,n,k,1,1);
update(1,1,n,id[k],k,1);
}
}
}return 0;
}