GCD求最大公约数

                求最大公约数哪个强,果断GCD,非递归版本和递归版本如下:

#include<iostream>
using namespace std;

int gcd(int a, int b){ //非递归版本
  int big = max(a, b);
  int small = min(a, b);
  int temp;
  while(small != 0 ){
    temp = big % small;    
    big = small;
    small = temp;
  }
  return big;
}

int gcd_(int a, int b){//递归版本
  int big = max(a, b);
  int small = min(a, b);
  int temp = big % small;
  return temp == 0 ? small : gcd_(small, temp);
}

int main(){
  int a = 34, b = 8;
  cout<<gcd(a, b)<<endl;
  cout<<gcd_(a, b)<<endl;
  return 0;
}
//output:
// 2
// 2


版权声明:本文为博主原创文章,未经博主允许不得转载。

转载于:https://www.cnblogs.com/Rex7/p/4752559.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值