洛谷 P1292 倒酒

题目描述

Winy是一家酒吧的老板,他的酒吧提供两种体积的啤酒,a ml和b ml,分别使用容积为a ml和b ml的酒杯来装载。

酒吧的生意并不好。Winy发现酒鬼们都非常穷。有时,他们会因为负担不起aml或者bml啤酒的消费,而不得不离去。因此,Winy决定出售第三种体积的啤酒(较小体积的啤酒)。

Winy只有两种杯子,容积分别为a ml和b ml,而且啤酒杯是没有刻度的。他只能通过两种杯子和酒桶间的互相倾倒来得到新的体积的酒。

为了简化倒酒的步骤,Winy规定:

(1)a≥b;

(2)酒桶容积无限大,酒桶中酒的体积也是无限大(但远小于桶的容积);

(3)只包含三种可能的倒酒操作:

①将酒桶中的酒倒入容积为b ml的酒杯中;

②将容积为a ml的酒杯中的酒倒入酒桶;

③将容积为b ml的酒杯中的酒倒入容积为a ml的酒杯中。

(4)每次倒酒必须把杯子倒满或把被倾倒的杯子倒空。

Winy希望通过若干次倾倒得到容积为a ml酒杯中剩下的酒的体积尽可能小,他请求你帮助他设计倾倒的方案

输入输出格式

输入格式:

 

两个整数a和b(0<b≤a≤10^9)

 

输出格式:

 

第一行一个整数c,表示可以得到的酒的最小体积。

第二行两个整数Pa和Pb(中间用一个空格分隔),分别表示从体积为a ml的酒杯中倒出酒的次数和将酒倒入体积为b ml的酒杯中的次数。

若有多种可能的Pa、Pb满足要求,那么请输出Pa最小的一个。若在Pa最小的情况下,有多个Pb满足要求,请输出Pb最小的一个。

 

输入输出样例

输入样例#1:
5 3
输出样例#1:
1
1 2

说明

样例解释:倾倒的方案为:

1、桶->B杯;2、B杯->A杯;

3、桶->B杯;4、B杯->A杯;

5、A杯->桶; 6、B杯->A杯;

 

题解: 扩展欧几里得

a中酒全部到点就相当于对a取模了..然后假设倒入b中y次,则。

by≡?(mod a),要求的就是最小的?,显然?就是gcd(a,b)。因为

ax+by=?,?最小就是gcd(a,b)喽。然后扩展欧几里得就好了...

一开始50,在最小解上花费了很长时间..

代码:

 

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

int a,b,x,y,r;

int exgcd(int a,int b,int &x,int &y){
    if(b==0){
        x=1;y=0;
        return a;
    }
    int t,r=exgcd(b,a%b,x,y);
    t=x;x=y;y=t-a/b*y;
    return r;
}

int main(){
    scanf("%d%d",&a,&b);
    r=exgcd(a,b,x,y);
    x*=-1;a*=-1;
    while(x<0||y<0){
        x+=b/r;y-=a/r*(x>=0);
    }
    printf("%d\n",r);
    printf("%d %d",x,y);
    return 0;
}

 

转载于:https://www.cnblogs.com/zzyh/p/7670141.html

### 关于 P7731 的题目解析 目前尚未找到针对 P7731 的具体官方题解或权威资料。然而,基于常见的编程竞赛问题模式以及已知的相关算法思路[^1],可以推测该类问题可能涉及动态规划、贪心策略或其他经典算法模型。 以下是关于此类问题的一般性分析框架: #### 动态规划的应用场景 如果 P7731 是一道典型的动态规划问题,则其核心在于状态定义转移方程的设计。例如,在某些货币兑换问题中,可以通过维护两个数组分别表示当前持有的不同币种的最大价值[^2]。这种设计方式类似于引用中的美元汇率转换逻辑。 ```cpp #include <iostream> using namespace std; int main(){ int n; cin >> n; double dp1 = 100.0, dp2 = 0; // 初始条件设定 for(int i=1;i<=n;i++){ int a; cin >> a; double tmp = dp1; dp1 = max(dp1, dp2 / a * 100); // 更新美元最大值 dp2 = max(dp2, tmp / 100 * a); // 更新马克最大值 } cout << fixed << setprecision(2) << dp1; // 输出最终结果 } ``` 上述代码片段展示了如何通过迭代更新来解决多阶段决策优化问题。 #### 贪心算法的可能性 对于另一些特定类型的题目,采用贪心方法可能会更加高效。比如当输入数据满足某种单调性质时,可以直接选取局部最优解从而达到全局最佳效果。 ```cpp #include <bits/stdc++.h> using namespace std; struct Item { long long w,v; }item[1000]; bool cmp(Item x,Item y){ return (double)x.v/x.w>(double)y.v/y.w; } int main(){ int N,W; cin>>N>>W; for(int i=0;i<N;i++)cin>>item[i].w>>item[i].v; sort(item,item+N,cmp); double res=0; for(int i=0;i<N && W>0;i++){ if(W>=item[i].w){res+=item[i].v;W-=item[i].w;} else{res+=(double)item[i].v/(double)item[i].w*(double)W;W=0;} } printf("%.2f\n",res); } ``` 此段程序体现了利用物品单位重量价值排序后依次装载的过程。 ### 总结 尽管未能直接获取到 P7731 的确切解答方案,但从已有经验出发仍可构建合理的求解路径。无论是运用动态规划还是尝试其他技巧如模拟、枚举等均需紧密结合实际需求展开深入探讨。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值