mfcc计算 java_语音特征参数MFCC计算过程

本文详细介绍了MFCC(Mel Frequency Cepstral Coefficients)计算过程,涉及预处理、FFT变换、加Mel滤波器组、对数运算及DCT等步骤。通过Java实现MFCC,用于提取语音信号的特征参数,适用于语音识别等领域。
摘要由CSDN通过智能技术生成

语音信号为从声道输入的速度波(输入信号),与声道形状(系统)卷积得到的声压波。语音信号的特征参数的提取正是对语音信号进行时域和频域的处理分离出声道形状(系统)的过程。声道形状(系统)也正是无论任何语音信号,只要每个字母或数字相同(它的发音就相同),它就在一定程度上相同的特征参量(频域共振峰(震荡的顶点)的包络)。

过程称为倒谱分析:(频域时对信号进行取对数处理)时域:卷积性;->fft频域:乘积性->梅尔滤波器组->频域取对数:乘积性—>加性;频率域幅度取对数->取逆变换(傅里叶变换),经低通滤波器取出包络可分离出系统,取出其中2到13个参量(一般)作为特征向量——共振峰的包络。

7a2d5a6c660a5f9a7237d20fd3a5adc8.png

7e66a4e0607ca36305d4f67aadd208fc.png

总体过程

1.信号的预处理,包括预加重(Preemphasis),分帧(Frame Blocking),加窗(Windowing)。假设语音信号的采样频率fs=8KHz.由于语音信号在10-30ms认为是稳定的,则可设置帧长为80~240点。帧移可以设置为帧长的1/2.

2.对每一帧进行FFT变换,求频谱,进而求得幅度谱。

3.对幅度谱加Mel

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值