常用非线性优化算法总结

本文总结了非线性最小二乘问题的解决方法,包括一阶梯度和二阶梯度法,如最速梯度下降法和牛顿法。重点介绍了高斯牛顿法及其局限性,以及改进的列文伯格-马夸尔特(LM)算法,通过引入信赖区域提高算法的稳定性和准确性。LM算法在非线性优化中扮演了重要角色,尤其在面临矩阵非奇异和病态问题时。
摘要由CSDN通过智能技术生成

非线性最小二乘

定义:简单的非线性最小二乘问题可以定义为
\[ \min_{x} \frac{1}{2}||f(x)||^2_2 \]
其中自变量\(x \in R^n\),\(f(x)\)是任意的非线性函数,并设它的维度为\(m\),即\(f(x) \in R^m\).

对于一些最小二乘问题,我们可以利用目标函数对\(x\)求导并令导数等于0来求解。但是导数
\[ \frac{d(\frac{1}{2}||f(x)||^2_2)}{dx}=0 \]
不一定可以直接求解\(x\),这个导函数可能是一个复杂的非线性方程。这种情况下一般采用迭代来求解,具体步骤可以表示为 :

  • (1) 给定一个初试值\(x_0\)
  • (2) 对于第\(k\)次迭代,寻找一个增量\(\Delta x_ k\),使得\(||f(x_k+\Delta x_k)||\)达到极小值
  • (3) 若\(\Delta x_k\)足够小,则停止迭代
  • (4) 否则,令\(x_{k+1}=x_k+\Delta x_k\),返回第(2)步骤

这个其实是通过迭代让目标函数一步步下降,直到最终达到收敛为止。一般而言,增量\(\Delta x\)可通过一阶梯度或二阶梯度来确定。

一阶梯度和二阶梯度法

首先,我们将目标函数在\(x\)附近进行泰勒展开
\[ ||f(x+\Delta x)||^2_2 \approx ||f(x)||^2_2+J(x)\Delta x+\frac{1}{2}\Delta x^T H(x) \Delta x \]
这里的\(J(x)\)\(f(x)\)关于\(x\)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值