ubuntu deep learning 环境配置

在UEFI模式下,ubuntu 安装双系统问题总结:

  • 首先是开启UEFI安装模式,如果关闭secure boot

  • grub2无法写入问题,分区方法:根目录/  ,  /home, efi格式(1G),其他根据个人需求分

  • 引导问题可以尝试在U盘安装盘(try ubuntu)中,下载boot-repair(具体操作百度搜索boot-repair就有教程),可以修复大量的boot问题;不过我最后是把整个盘格式化了然后执行上面的步骤才解决引导问题

正式配置篇:

  • nvidia显卡驱动 installed by cuda, so do next step

  • cuda

    • Nvidia官网 下载CUDA 8 并安装
      # .deb格式的文件将显卡驱动和cuda工具包都一起安装了
      sudo dpkg -i cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb
      sudo apt-get update
      sudo apt-get install cuda
      # .run格式的文件,安装时有一个人机交互的界面,可以选择是否安装显卡驱动,CUDA安装路径等。适合于先安装特殊需求的驱动,然后单独安装CUDA工具包
      sudo sh cuda_8.0.61_375.26_linux.ru
    • 将 CUDA 添加至环境变量
      echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc
      echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
      source ~/.bashrc
    • 确认是否安装成功
      • nvcc -V
    • 重启计算机
      • sudo shutdown -r now
  • cudnn

    • NVIDIA CUDA Deep Neural Network library(cuDNN)是深度神经网络中GPU加速相关的库,实现了很多基本的结构,如前传后传,卷积层,pooling 层,归一化,激活函数等。
      首先,需要在https://developer.nvidia.com/cudnn 注册并下载。这里选择下载cuDNN v5.1 library for Linux for my time 解压缩并复制文件到相应位置 # must be careful that libcudnn.so.x.x.x,where x must be the same as yours tar xvf cudnn*.tgz cd cuda/include # 这里文件下载到了根目录下,需按照自身情况选择目录 sudo cp cudnn.h /usr/local/cuda/include/ cd ~/cuda/lib64 sudo cp lib* /usr/local/cuda/lib64/ cd /usr/local/cuda/lib64/ sudo rm -rf libcudnn.so libcudnn.so.7 # 删除原有动态文件 sudo ln -s libcudnn.so.7.0.2 libcudnn.so.7 # 生成软链接 sudo ln -s libcudnn.so.7 libcudnn.so # 生成软链接 sudo ldconfig #更新链接,不然编译caffe会出现找不到cudnn的文件路径错误! sudo chmod a+r /usr/local/cuda/lib64/libcudnn* # 将文件设置为所有人皆可读取

      到目前位置,跟GPU相关的东西都安装好了,使用指令nvidia-smi,可查看GPU当前状态。或者通过指令nvidia-settings查看GPU的详细信息

       

  • pip


    • pip是Python的包管理工具,主要用于安装PyPI上的软件包,可以替代easy_install工具。
      
      sudo apt-get install python-pip # 安装pip
      sudo apt-get install python3-pip #安装pip3
      
      /usr/bin中有 pip,pip2,pip3,使用pip2为python2.7 安装包,用pip3为python3.5安装包,至于使用pip为那个版本的python安装,要看pip指向的是pip2还是pip3
      
      pip --version

       

  • opencv

  • 首先,你可以直接安装:
    sudo pip install --upgrade opencv-python
  • 当然,也可以从官网http://opencv.org/下载Opencv从源码安装,区别自行百度
  • cmake的过程中,会出现ippicv_2017u3_lnx_intel64_general_20170822.tgz下载不下来的问题,可以参考http://blog.csdn.net/neilooo/article/details/78425559 这篇文章给了下载地址,还有下载后,应该放的目录是:前面的md5验证码(在目录 /opencv/3rdparty/ippicv/ippicv.cmake文件夹里有对应的md5验证码)应该重命名添加到自己下载的ippicv_2017u3_lnx_intel64_general_20170822.tgz文件,然后拷贝到如下目录替换

    /home/youmi/opencv/.cache/ippicv# ls
    4e0352ce96473837b1d671ce87f17359-ippicv_2017u3_lnx_intel64_general_20170822.tgz

  • 如果还需要官方的其他模块,比如sift,还需要  git clone https://github.com/opencv/opencv_contrib 下载的opencv_contrib需要在opencv目录下,和下面要创建的build目录应该在同一目录下
  • 而且,opencv_contrib 应该和opencv 版本号应该相同 ,添加opencv_contrib 参考 https://www.cnblogs.com/asmer-stone/p/5089764.html
    cd ~/opencv
    mkdir build
    cd build
    配置:
    只需要opencv模块:
    1 sudo apt install cmake
    2 cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..

    如果还需要opencv_contrib+opencv:
    1 sudo apt install cmake
    记得替换下面命令中的path to opencv路径
    2 cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local -D OPENCV_EXTRA_MODULES_PATH=/path to opencv/opencv_contrib/modules ..
    或者直接:
    cmake -D CMAKE_BUILD_TYPE=RELEASE\
    -D CMAKE_INSTALL_PREFIX=/usr/local\
    -D WITH_TBB=ON\
    -D WITH_V4L=ON\
    -D WITH_QT=ON\
    -D WITH_OPENGL=ON\
    -D INSTALL_PYTHON_EXAMPLES=ON\
    -D BUILD_EXAMPLES=ON\
    -D INSTALL_C_EXAMPLES=ON\
    -D CUDA_NVCC_FLAGS="-D_FORCE_INLINES"\
    -D BUILD_NEW_PYTHON_SUPPORT=ON\
    -D OPENCV_EXTRA_MODULES_PATH=~/Github/opencv_contrib/modules ..
    
     
        

     

    
    编译:
    
    make -j8
    
    install:
    
    sudo make install
    sudo /bin/bash -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf'
    sudo ldconfig
  • pycharm install

    •   sudo tar -xvf pycharm-community-2017.2.3.tar.gz
    •       找到pycharm的bin文件夹,然后打开终端,sh ./pycharm.sh
  • pytorch

    •   从pytorch官网选择对应的系统 http://pytorch.org/
    •        sudo pip install http://download.pytorch.org/whl/cu80/torch-0.1.12.post2-cp27-none-linux_x86_64.whl
    •        sudo pip install torchvision
  • jupyter notebook

    •   
      在Ubuntu上安装Jupyter notebook
          pip install jupyter notebook
      在~/.bashrc 中添加路径
          export PATH=$PATH:~/.local/bin
      启动Jupyter notebook
          jupyter notebook
      为jupyter添加Python3内核
        pip3 install ipykerne
       
            
         sudo python3 -m ipykernel install --name python3 --display-name "Python3.5.2"
  • caffe

    •   git clone https://github.com/BVLC/caffe.git
    •  
            
      sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler  
      sudo apt-get install --no-install-recommends libboost-all-dev
      
      sudo apt-get install libatlas-base-dev (if you want to use libatlas other than openblas) sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev 

      sudo cp Makefile.config.example Makefile.config 修改Makefile.config文件gksu gedit Makefile.config
         compare to you Makefile.config to set below USE_CUDNN :
      = 1 使用cudnn OPENCV_VERSION := 3 使用opencv3.1.0版本 CUDA_DIR := /usr/local/cuda CUDA路径 BLAS := open 使用openBLAS版本 if you use libatlabs,do not change it BLAS_INCLUDE := /usr/local/include BLAS路径 BLAS_LIB := usr/local/lib MATLAB_DIR := /usr/local/matlab matlab 路径 if you do not use it, do not change it PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include PYTHON_LIB := /usr/lib WITH_PYTHON_LAYER := 1 INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/ USE_PKG_CONFIG := 1 BUILD_DIR := build DISTRIBUTE_DIR := distribute TEST_GPUID := 0 Q ?= @


      # make过程中可能出现的bug,出门左拐

      sudo make all sudo make test sudo make runtest


      make pycaffe -j8


      把caffe中和python 相关的内容的路劲刚添加到python的编译路径中
      sudo gedit ~/.bashrc
      export PYTHONPATH=(path/to/caffe)/python:$PYTHONPATH # be sure to change the path
      source ~/.bashrc

转载于:https://www.cnblogs.com/youmi/p/7729391.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值