在UEFI模式下,ubuntu 安装双系统问题总结:
-
首先是开启UEFI安装模式,如果关闭secure boot
-
grub2无法写入问题,分区方法:根目录/ , /home, efi格式(1G),其他根据个人需求分
-
引导问题可以尝试在U盘安装盘(try ubuntu)中,下载boot-repair(具体操作百度搜索boot-repair就有教程),可以修复大量的boot问题;不过我最后是把整个盘格式化了然后执行上面的步骤才解决引导问题
正式配置篇:
-
nvidia显卡驱动 installed by cuda, so do next step
-
cuda
- 在Nvidia官网 下载CUDA 8 并安装
# .deb格式的文件将显卡驱动和cuda工具包都一起安装了 sudo dpkg -i cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb sudo apt-get update sudo apt-get install cuda # .run格式的文件,安装时有一个人机交互的界面,可以选择是否安装显卡驱动,CUDA安装路径等。适合于先安装特殊需求的驱动,然后单独安装CUDA工具包 sudo sh cuda_8.0.61_375.26_linux.ru
- 将 CUDA 添加至环境变量
echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc source ~/.bashrc
- 确认是否安装成功
- nvcc -V
- 重启计算机
- sudo shutdown -r now
- 在Nvidia官网 下载CUDA 8 并安装
-
cudnn
-
NVIDIA CUDA Deep Neural Network library(cuDNN)是深度神经网络中GPU加速相关的库,实现了很多基本的结构,如前传后传,卷积层,pooling 层,归一化,激活函数等。
首先,需要在https://developer.nvidia.com/cudnn 注册并下载。这里选择下载cuDNN v5.1 library for Linux for my time 解压缩并复制文件到相应位置 # must be careful that libcudnn.so.x.x.x,where x must be the same as yours tar xvf cudnn*.tgz cd cuda/include # 这里文件下载到了根目录下,需按照自身情况选择目录 sudo cp cudnn.h /usr/local/cuda/include/ cd ~/cuda/lib64 sudo cp lib* /usr/local/cuda/lib64/ cd /usr/local/cuda/lib64/ sudo rm -rf libcudnn.so libcudnn.so.7 # 删除原有动态文件 sudo ln -s libcudnn.so.7.0.2 libcudnn.so.7 # 生成软链接 sudo ln -s libcudnn.so.7 libcudnn.so # 生成软链接 sudo ldconfig #更新链接,不然编译caffe会出现找不到cudnn的文件路径错误! sudo chmod a+r /usr/local/cuda/lib64/libcudnn* # 将文件设置为所有人皆可读取
到目前位置,跟GPU相关的东西都安装好了,使用指令nvidia-smi
,可查看GPU当前状态。或者通过指令nvidia-settings
查看GPU的详细信息
-
-
pip
pip是Python的包管理工具,主要用于安装PyPI上的软件包,可以替代easy_install工具。 sudo apt-get install python-pip # 安装pip sudo apt-get install python3-pip #安装pip3 /usr/bin中有 pip,pip2,pip3,使用pip2为python2.7 安装包,用pip3为python3.5安装包,至于使用pip为那个版本的python安装,要看pip指向的是pip2还是pip3 pip --version
-
opencv
- 首先,你可以直接安装:
sudo pip install --upgrade opencv-python
- 当然,也可以从官网http://opencv.org/下载Opencv从源码安装,区别自行百度
- cmake的过程中,会出现ippicv_2017u3_lnx_intel64_general_20170822.tgz下载不下来的问题,可以参考http://blog.csdn.net/neilooo/article/details/78425559 这篇文章给了下载地址,还有下载后,应该放的目录是:前面的md5验证码(在目录 /opencv/3rdparty/ippicv/ippicv.cmake文件夹里有对应的md5验证码)应该重命名添加到自己下载的ippicv_2017u3_lnx_intel64_general_20170822.tgz文件,然后拷贝到如下目录替换
/home/youmi/opencv/.cache/ippicv# ls
4e0352ce96473837b1d671ce87f17359-ippicv_2017u3_lnx_intel64_general_20170822.tgz - 如果还需要官方的其他模块,比如sift,还需要 git clone https://github.com/opencv/opencv_contrib 下载的opencv_contrib需要在opencv目录下,和下面要创建的build目录应该在同一目录下
- 而且,opencv_contrib 应该和opencv 版本号应该相同 ,添加opencv_contrib 参考 https://www.cnblogs.com/asmer-stone/p/5089764.html
cd ~/opencv mkdir build cd build 配置: 只需要opencv模块: 1 sudo apt install cmake 2 cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
如果还需要opencv_contrib+opencv:
1 sudo apt install cmake
记得替换下面命令中的path to opencv路径
2 cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local -D OPENCV_EXTRA_MODULES_PATH=/path to opencv/opencv_contrib/modules ..
或者直接:cmake -D CMAKE_BUILD_TYPE=RELEASE\ -D CMAKE_INSTALL_PREFIX=/usr/local\ -D WITH_TBB=ON\ -D WITH_V4L=ON\ -D WITH_QT=ON\ -D WITH_OPENGL=ON\ -D INSTALL_PYTHON_EXAMPLES=ON\ -D BUILD_EXAMPLES=ON\ -D INSTALL_C_EXAMPLES=ON\ -D CUDA_NVCC_FLAGS="-D_FORCE_INLINES"\ -D BUILD_NEW_PYTHON_SUPPORT=ON\ -D OPENCV_EXTRA_MODULES_PATH=~/Github/opencv_contrib/modules ..
编译: make -j8 install: sudo make install sudo /bin/bash -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf' sudo ldconfig
-
pycharm install
- sudo tar -xvf pycharm-community-2017.2.3.tar.gz
- 找到pycharm的bin文件夹,然后打开终端,sh ./pycharm.sh
-
pytorch
- 从pytorch官网选择对应的系统 http://pytorch.org/
- sudo pip install http://download.pytorch.org/whl/cu80/torch-0.1.12.post2-cp27-none-linux_x86_64.whl
- sudo pip install torchvision
-
jupyter notebook
-
在Ubuntu上安装Jupyter notebook pip install jupyter notebook 在~/.bashrc 中添加路径 export PATH=$PATH:~/.local/bin 启动Jupyter notebook jupyter notebook
为jupyter添加Python3内核pip3 install ipykernesudo python3 -m ipykernel install --name python3 --display-name "Python3.5.2"
-
-
caffe
- git clone https://github.com/BVLC/caffe.git
-
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev sudo apt-get install libatlas-base-dev (if you want to use libatlas other than openblas) sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo cp Makefile.config.example Makefile.config 修改Makefile.config文件gksu gedit Makefile.config
compare to you Makefile.config to set below USE_CUDNN := 1 使用cudnn OPENCV_VERSION := 3 使用opencv3.1.0版本 CUDA_DIR := /usr/local/cuda CUDA路径 BLAS := open 使用openBLAS版本 if you use libatlabs,do not change it BLAS_INCLUDE := /usr/local/include BLAS路径 BLAS_LIB := usr/local/lib MATLAB_DIR := /usr/local/matlab matlab 路径 if you do not use it, do not change it PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include PYTHON_LIB := /usr/lib WITH_PYTHON_LAYER := 1 INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/ USE_PKG_CONFIG := 1 BUILD_DIR := build DISTRIBUTE_DIR := distribute TEST_GPUID := 0 Q ?= @
# make过程中可能出现的bug,出门左拐
sudo make all sudo make test sudo make runtestmake pycaffe -j8
把caffe中和python 相关的内容的路劲刚添加到python的编译路径中sudo gedit ~/.bashrc
export PYTHONPATH=(path/to/caffe)/python:$PYTHONPATH # be sure to change the pathsource ~/.bashrc