遗传算法是在随机的初始数据下,经过一段时间的变化,最后收敛得到针对某类特定问题的一个或者多个解。
主要步骤有编码 选择 交叉 变异
这里以一个极其简单的探索迷宫出路的代码为例 增加对遗传算法的感性认识。
编码
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,8,1,0,0,0,0,0,0,0,1,0,0,1,1,
1,0,1,0,1,0,1,1,1,0,0,0,0,0,1,
1,0,1,0,1,0,1,1,1,1,0,1,0,1,1,
1,0,0,0,1,0,0,0,0,0,0,1,0,5,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
我们定义这样一个迷宫
1表示为不可到达地点
0表示可通过区域
5是起点 8是终点
我们再定义一系列行走出迷宫的行走方向数组 walk[TestStep](walk[50]).这个数组记录了走50步的方向
方向使用0-3来代替 0 表示向上走,1表示向下走,2表示向左走,3表示向右走。然后测试这一系列走法在迷宫能达到的坐标,以达到的位置和终点的X\Y的差值的倒数作为这个走法的评分
price = 1/(1.0+(abs(exitIndex.x-vMethods[i].currentPosIndex.x)+abs(exitIndex.y-vMethods[i].currentPosIndex.y)));
考虑到X\Y的差值可能为零,所以额外加了一个1.0;以上就是编码的步骤;
选择
作为进化演变下一代的元素,我们需要选择评分比较高的走法
通常的办法是轮盘赌选择 根据评分的高低 决定其被选中的几率
各个个体被选中的概率与其适应度函数值大小成正比。设群体大小为n ,个体i 的适应度为 Fi,则个体i 被选中遗传到下一代群体的概率为:
比如说
走法A 评分0.5
走法B 评分0.2
走法C 评分0.3
那么根据一个随机范围为0-99的随机数
如果数目在0-49之间 则选择走法A
如果数目在50-69之间则选择走法B
如果数目在70-99之间则选择走法C
我的代码中 写的比较简单 直接选择评分在前一半的作为进化演变的元素
int index1 = rand()%(TrySize/2);
int index2 = rand()%(TrySize/2);
缺点是可能逐步演化中 族群的走法都慢慢接近 甚至编程一样 从未导致没有变化 得不到正确结果
优点是 代码简单
交叉
2个元素交换部分结构,来构造下一代新的元素
例如
走法A 01230123 0123
走法B 12301230 1230
构造下一代走法
01230123 1230
代码中为
Method m = CrossOver(vMethods[index1],vMethods[index2]);
突变
对元素数据进行小概率的调整 以调整进化的集中性 避免所有元素同一化
代码中是以25%的概率 对某一步的走法进行调整
if((rand()%100)>75)
{
int index = rand()%TestStep;
m.walk[index] = direction(rand()%4);
}
本节代码属于实验性代码 对具体参数和一些算法都做了简化 只是加深对算法的理解 方便入门
至于算法的选择 参数优化调整的理论依据 均未涉及 需要学习理论教程书籍
代码如下
1 #include <iostream> 2 #include <ctime> 3 #include <cstdlib> 4 #include <vector> 5 #include <algorithm> 6 7 using namespace std; 8 9 int mapArray[6][15] = { 2,3,4,1,1,1,1,1,1,1,1,1,1,1,1, 10 1,8,1,0,0,0,0,0,0,0,1,0,0,1,1, 11 1,0,1,0,1,0,1,1,1,0,0,0,0,0,1, 12 1,0,1,0,1,0,1,1,1,1,0,1,0,1,1, 13 1,0,0,0,1,0,0,0,0,0,0,1,0,5,1, 14 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; 15 struct Point{ 16 int x; 17 int y; 18 }; 19 20 Point startIndex = {4,13}; 21 Point exitIndex = {1,1}; 22 23 enum direction{ 24 Mup =0, 25 Mdown , 26 Mleft , 27 Mright }; 28 29 #define TestStep 50 30 #define TrySize 50 31 32 33 struct Method{ 34 direction walk[TestStep]; 35 Point currentPosIndex; 36 double price; 37 }; 38 39 vector<Method> vMethods; 40 vector<Method> vNewMethods; 41 42 43 bool SortByPrice(const Method& obj1,const Method& obj2) 44 { 45 return obj1.price>obj2.price; 46 } 47 48 void InitRandomWalk(direction walk[]){ 49 for(int i = 0;i< TestStep;++i){ 50 walk[i] = direction(rand()%4); 51 } 52 } 53 54 bool Walk(Point& currentPosIndex,direction walk[],int length){ 55 for(int i = 0;i< TestStep;++i){ 56 if(walk[i] == Mup){ 57 if( (currentPosIndex.x-1)>=0 && 58 mapArray[currentPosIndex.x-1][currentPosIndex.y] != 1){ 59 currentPosIndex.x -= 1; 60 } 61 }else if(walk[i] == Mdown){ 62 if( (currentPosIndex.x+1)<=5 && 63 mapArray[currentPosIndex.x+1][currentPosIndex.y] != 1){ 64 currentPosIndex.x += 1; 65 } 66 }else if(walk[i] == Mleft){ 67 if( (currentPosIndex.y-1)>=0 && 68 mapArray[currentPosIndex.x][currentPosIndex.y-1] != 1){ 69 currentPosIndex.y -= 1; 70 } 71 }else if(walk[i] == Mright){ 72 if( (currentPosIndex.y+1)<=14 && 73 mapArray[currentPosIndex.x][currentPosIndex.y+1] != 1){ 74 currentPosIndex.y += 1; 75 } 76 } 77 if(currentPosIndex.x == exitIndex.x && currentPosIndex.y == exitIndex.y){ 78 return true; 79 } 80 } 81 82 return false; 83 } 84 85 Method CrossOver(const Method& m1,const Method& m2){ 86 int i = rand()%TestStep; 87 Method m; 88 89 for(int j = 0; j <= i ;++j){ 90 m.walk[j] = m1.walk[j]; 91 } 92 93 for(int k =i;k < TestStep;++k){ 94 m.walk[k] = m2.walk[k]; 95 } 96 return m; 97 } 98 99 bool run(){ 100 101 for(int i = 0;i < TrySize;++i){ 102 vMethods[i].currentPosIndex.x = startIndex.x; 103 vMethods[i].currentPosIndex.y = startIndex.y; 104 if(Walk(vMethods[i].currentPosIndex, vMethods[i].walk,TestStep)){ 105 cout << "walk to exit!!!" << endl; 106 return true; 107 } 108 vMethods[i].price = 1/(1.0+(abs(exitIndex.x-vMethods[i].currentPosIndex.x)+abs(exitIndex.y-vMethods[i].currentPosIndex.y))); 109 cout << "current pos:\t" << vMethods[i].currentPosIndex.x <<" " << vMethods[i].currentPosIndex.y <<"\tprice:"<< vMethods[i].price<< endl; 110 } 111 112 sort(vMethods.begin(),vMethods.end(),SortByPrice); 113 for(int i = 0 ; i <TrySize;i++){ 114 int index1 = rand()%(TrySize/2); 115 int index2 = rand()%(TrySize/2); 116 117 // for(int k = 0 ;k<TestStep;++k){ 118 // cout << vMethods[index1].walk[k]; 119 // } 120 // cout << endl; 121 122 Method m = CrossOver(vMethods[index1],vMethods[index2]); 123 if((rand()%100)>75) 124 { 125 int index = rand()%TestStep; 126 m.walk[index] = direction(rand()%4); 127 128 } 129 vNewMethods.push_back(m); 130 // for(int k = 0 ;k<TestStep;++k){ 131 // cout << vMethods[index1].walk[k]; 132 // } 133 // cout << endl; 134 } 135 vMethods = vNewMethods; 136 vNewMethods.clear(); 137 return false; 138 } 139 140 141 142 143 144 int main(int argc, char *argv[]) 145 { 146 vMethods.clear(); 147 srand( (unsigned)time( NULL ) ); 148 for(int i = 0;i < TrySize;++i){ 149 Method m; 150 InitRandomWalk( m.walk); 151 vMethods.push_back(m); 152 } 153 154 int64_t count = 0; 155 while(!run()){ 156 count++; 157 } 158 cout << "run " << count << " times." << endl; 159 160 161 return 0; 162 }
截图来自 《游戏编程中的人工智能》
代码为该书本代码中的缩水精简版