题目
题解
先将横坐标离散化,下文提到的横坐标都是离散化后的值。
接着考虑dp
设\(dp_{i, j}\)表示横坐标为\(i\)到\(j\)区间内的答案。
于是有两种转移
- 找一个横坐标, 使得没有任意一个矩形穿过它, 枚举转移即可。
- 找一个不到横坐标,使得没有任意一个矩形, 那么直接选横坐标范围为[i,j]的矩形,于是把这个矩形的高度设到最高即可\((\)以我的语文水平可能描述的不是很清楚, 具体看代码\()\)。
代码
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
using namespace std;
const int INF = 0x7F7F7F7F;
const int N = 110;
int x[N], y[N];
int maxy[N];
int num[N], total;
int f[N][N], d[N];
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
int n, s;
scanf("%d %d", &n, &s);
for (int i = 1; i <= n; i++)
scanf("%d %d", &x[i], &y[i]);
total = 0;
for (int i = 1; i <= n; i++) num[++total] = x[i];
sort(num + 1, num + 1 + total);
total = unique(num + 1, num + 1 + total) - num - 1;
for (int i = 1; i <= n; i++) x[i] = lower_bound(num + 1, num + 1 + total, x[i]) - num;
memset(maxy, 0, sizeof(int) * (total + 1));
for (int i = 1; i <= n; i++) maxy[x[i]] = max(maxy[x[i]], y[i]);
for (int i = 1; i <= total; i++)
for (int j = 1; j + i - 1 <= total; j++)
{
f[j][j + i - 1] = INF;
int maxh = 0;
for (int k = j; k <= i + j - 1; k++) maxh = max(maxh, maxy[k]);
for (int k = j; k < i + j - 1; k++)
f[j][j + i - 1] = min(f[j][j + i - 1], f[j][k] + f[k + 1][j + i - 1]);
if ((num[j + i - 1] - num[j]) <= s / maxh) { f[j][j + i - 1] = 1; continue; }
memset(d, 127, sizeof(d));
int lim = s / (num[j + i - 1] - num[j]);
d[j - 1] = 0;
for (int k = j; k <= j + i - 1; k++)
{ if (maxy[k] <= lim) d[k] = d[k - 1];
else for (int l = j; l <= k; l++) d[k] = min(d[k], f[l][k] + d[l - 1]);
}
f[j][j + i - 1] = min(f[j][j + i - 1], d[j + i - 1] + 1);
}
printf("%d\n", f[1][total]);
}
return 0;
}