数据分析(7):pandas介绍和数据导入和导出

本文介绍了使用Python进行数据处理和可视化的基础知识,包括Numpy、pandas等库的应用,以及如何利用matplotlib绘制图表。特别强调了pandas在处理大规模结构化数据方面的优势。

前言

  1. Numpy
    Numpy是科学计算的基础包,对数组级的运算支持较好
  2. pandas

    pandas提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数。pandas兼具Numpy高性能的数组计算功能以及电子表格和关系型数据(如SQL)灵活的数据处理能力,处理上千万的大数据易于反掌。对于金融行业的用户,pandas提供了大量适用于金融数据的高性能时间序列功能和工具。DataFrame是pandas的一个对象,它是一个面向列的二维表结构,且含有行标和列标。

DataFrame是pandas的一个对象,它是一个面向列的二维表结构,且含有行标和列标。

  1. matplotlib
    matplotlib是最流行的用于绘制数据图表的python库。
  2. Scipy
    Scipy是一组专门解决科学计算中各种标准问题域的包的集合。
  3. statsmodels
    提供了各种模型
  4. scikit-learn
    machine learning模块

    数据导入和导出

    1.本地读取

    import pandas as pd data = pd.read_csv(filepath)

    2.网络读取

    import pandas as pd data_url = "https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv" #填写url读取 df = pd.read_csv(data_url)

    3.读取excel文件

    data = pd.read_excel(filepath)

    4.导出到csv文件

    `
    data.to_csv(filepath, encoding = 'utf-8', index = False)

    index=False表示导出时去掉行名称,如果数据中含有中文,一般encoding指定为‘utf-8’

`

转载于:https://www.cnblogs.com/ajmd/p/6237591.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值