20160712梅西法&科利法

梅西法和科利法是BCS评分里的两种方法。BCS是用来确定哪些队伍被邀请参加哪个系列的比赛的。BCS主要是有两个评分来源:人和计算机。人的输入数据是教练和媒体,计算的输入是6个数学模型。具体BCS的细节这里不细谈了,以后有空专门写一篇博客谈,今天就只谈谈梅西法和科利法。

1. 梅西法

首先放出作者的网站masseyratings.com,如果要搜索梅西法的资料,建议直接google-"massey ratings",英文资料一大把。

1.1 梅西法基本原理

主要的公式如下:
\[r_i-r_j=y_k\]
其中\(y_k\)代表比赛k中获胜方的优势,\(r_i\)代表队伍i的评分,\(r_j\)代表队伍j的评分。针对历史已经比赛过的结果,我们可以列出一个上述形式的方程组。n支队伍,m场比赛,那么就有n个未知数,m个方程。写为:
\[Xr=y\]
X矩阵:每一行大部分为0,在第i列和j列上分别是1和-1.
y:代表获胜方优势的向量。
r:代表我们所求的每个队伍的评分。
这个方程组解法为\(X^T Xr=X^T y\)。针\(X^T X\)简单分析下,对角元素就是队伍i完成的比赛场数,非对焦元素就是队伍i和队伍j比赛场数的相反数。针对\(X^T y\)的第i个元素就是队伍i所有比赛获得的分差之和。
这里简单分析下\(X^T X\)是一个n阶对称方阵,也是一个对角阵,并且每一列线性相关。
为了让r有唯一解,往往需要给\(X^T X\)和\(X^T y\)增加一行0,表示每个队伍所有评分总和为0.

1.2 梅西法高级原理

这个高级原理就是引入了一个攻击和防守的特性。这里做了一个假设,队伍的评分等于攻击评分加上防守评分。现在我们引入一些符号来推导一些公式看看。
攻击评分:o
防守评分:d
向量\(X^Ty\)分解为f-a,代表得到的总分数-失去的分数。
矩阵\(X^TX\)分解为T-P,T是对角阵,P是非对角阵。
\[\begin{align}
X^TXr&=X^Ty \\
\left( T-P \right)\left( o+d \right) &= f-a \\
To-Po+Td-Pd &=f -a
\end{align}\]
将上式分解为:
\[
\begin{align}
To-Pd & =f\\
Po-Td & =a\\
\end{align}
\]
继续:
\[
\begin{align}
To-Pd & =f\\
T\left(r-d\right)-Pd&=f\\
\left( T+P\right)d&=Tr-f\\
\end{align}
\]
看看上式,除了d是所求的,其他的都能得到。那么这里的向量d和o就可以搞定了。

1.3 梅西法的使用

当我们能求到一个队伍的攻击分数和防守分数,那么我们可以预测该队伍的的比赛具体分数。比如A队伍攻击分数为5,防守分数为2,B队伍攻击分数为3,防守分数为4,则他们的比分应该是(5-4):(3-2),结局就是1:1。
网页中该如何使用梅西法排名呢?

如果两个网页之间没有超链接,则没有比赛,如果有超链,则代表有比赛。这里就可以搞定矩阵\(X^TX\)
同理可以利用所有入链总数减去所有出链总数,代表评分向量\(X^T Y\)。

2 科利法

这个和前面的梅西法不同,关键在于获胜率。以前的获胜率常常使用\(r_i = \frac{w_i}{t_i}\),也就是赢的场数除以比赛总场数。但是这个评分是有几个缺陷的,击败强的对手和弱的对手是一样的,如果从未获胜则胜率为0,很多时候常常发生评分持平的情况。
这个时候,科利对刚刚的公式做了一个小小的修改。
\[r_i = \frac{1+w_i}{2+t_i}\]
简单来看这个改变很简单,感觉用处应该不会太大。接下来就分析下,这个里面如何克服了上面提出的一些缺陷。

2.1 科利法原理

这里是对一个公式进行变形,讨论开始的。

\[\begin{align}
w_i & = \frac{w_i - l_i }{2} + \frac{w_i + l_i}{2} \\
& = \frac{w_i - l_i}{2} + \frac{t_i}{2} \\
& = \frac{w_i - l_i}{2} + \sum_{j=1}^{t_i}{\frac{1}{2}}
\end{align}\]

这个时候就展开对\(\sum_{j=1}^{t_i}{\frac{1}{2}}\)的讨论。
因为所有队伍都是以1/2开始的,所以最先开始时\(\sum_{j=1}^{t_i}{\frac{1}{2}}=\sum_{j\in o_j}{r_j}\)。这里的o_j是指队伍i的对手集合。随着比赛开始,\(\sum_{j=1}^{t_i}{\frac{1}{2}}=\sum_{j\in o_j}{r_j}\)这个等式就不成立了,但是我们可以说明这个等式近似成立,因为比赛的继续,一方胜利,一方失败,可以说评分是在1/2上左右摇摆的。这就是科利法的关键所在,接下来的推导就很简单了。
将\(w_i \approx \frac{w_i - l_i}{2} + \sum_{j \in o_i}{r_j}\),带入\(r_i = \frac{1+w_i}{2+t_i}\)中得到:
\[r_i = \frac{1+ \left( w_i - l_i\right)/2 + \sum_{j \in o_i}{r_j}}{2+t_i}\]
观察这个等式,记住我们要求的是r,这里未知的也是r。而且这里很明显是一个线性的等式,可以写为\(Cr= b\)的形式,继续吧。
\[b_i = 1 + \frac{1}{2}\left( w_i - l_i\right)\]
\[C_ij = \begin{cases}
2+ t_i,i=j \\
-n_{ij},i \neq j
\end{cases}\]
其中n_ij为队伍i和j比赛次数。可以证明C_{n*n}可逆,具有唯一解。

2.2 科利法应用

  1. 科利法的结果没有考虑比赛具体的分数,只考虑比赛的胜负情况。基于此科利法不会受到比赛具体分数的干扰,比如强队在弱队上大比分的胜出。
  2. 第二点,就是基于之前的假设,\(\sum_{j=1}^{t_i}{\frac{1}{2}}=\sum_{j\in o_j}{r_j}\),一个队伍胜率增加,代表另一个队伍胜率降低,但是平均值应该是1/2左右。

2.3 科利法和梅西法的联系

给出一个等式\(C = 2I + X^T X\),那么梅西法可以科利化为\( \left( 2I + X^T X \right)r=p\),这里的p也就是梅西法中的y,是包含了得分的信息。这里加上了2I,可以使得矩阵非奇异。同理梅西法也可以进行科利化,一切尽在之前的那个矩阵。

3.感想

说说自己的想法。这两个算法有相关性,有各自的优缺点,比如是否考虑比赛的分数,是否考虑比赛的胜率,能否计算攻守评分等等。但是这里会发现一切都是计算的线性的等式,什么意思呢,比如这个梅西法有偏,是因为这个方法会出现强队大胜弱队的情况,那么这个大胜获取的分数和他们的实力不是成正比,而求解是求解的线性的方程组,所以就导致了有偏。那如果这里能假设是平方的关系,就是获取的分数和实力是平方比的关系,抑或是更复杂的关系,小范围的实力差距是线性,大范围的实力差距是平方或更高的次方。那是否可以试试呢?

转载于:https://www.cnblogs.com/feitongxunke/p/20160712mei-xi-fake-li-fa.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
VR(Virtual Reality)即虚拟现实,是一种可以创建和体验虚拟世界的计算机技术。它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真,使用户沉浸到该环境中。VR技术通过模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。 VR技术具有以下主要特点: 沉浸感:用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。 交互性:用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。 构想性:也称想象性,指用户沉浸在多维信息空间中,依靠自己的感知和认知能力获取知识,发挥主观能动性,寻求解答,形成新的概念。此概念不仅是指观念上或语言上的创意,而且可以是指对某些客观存在事物的创造性设想和安排。 VR技术可以应用于各个领域,如游戏、娱乐、教育、医疗、军事、房地产、工业仿真等。随着VR技术的不断发展,它正在改变人们的生活和工作方式,为人们带来全新的体验。
VR(Virtual Reality)即虚拟现实,是一种可以创建和体验虚拟世界的计算机技术。它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真,使用户沉浸到该环境中。VR技术通过模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。 VR技术具有以下主要特点: 沉浸感:用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。 交互性:用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。 构想性:也称想象性,指用户沉浸在多维信息空间中,依靠自己的感知和认知能力获取知识,发挥主观能动性,寻求解答,形成新的概念。此概念不仅是指观念上或语言上的创意,而且可以是指对某些客观存在事物的创造性设想和安排。 VR技术可以应用于各个领域,如游戏、娱乐、教育、医疗、军事、房地产、工业仿真等。随着VR技术的不断发展,它正在改变人们的生活和工作方式,为人们带来全新的体验。
基于GPT-SoVITS的视频剪辑快捷配音工具 GPT, 通常指的是“Generative Pre-trained Transformer”(生成式预训练转换器),是一个在自然语言处理(NLP)领域非常流行的深度学习模型架构。GPT模型由OpenAI公司开发,并在多个NLP任务上取得了显著的性能提升。 GPT模型的核心是一个多层Transformer解码器结构,它通过在海量的文本数据上进行预训练来学习语言的规律。这种预训练方式使得GPT模型能够捕捉到丰富的上下文信息,并生成流畅、自然的文本。 GPT模型的训练过程可以分为两个阶段: 预训练阶段:在这个阶段,模型会接触到大量的文本数据,并通过无监督学习的方式学习语言的结构和规律。具体来说,模型会尝试预测文本序列中的下一个词或短语,从而学习到语言的语、语义和上下文信息。 微调阶段(也称为下游任务训练):在预训练完成后,模型会被应用到具体的NLP任务中,如文本分类、机器翻译、问答系统等。在这个阶段,模型会使用有标签的数据进行微调,以适应特定任务的需求。通过微调,模型能够学习到与任务相关的特定知识,并进一步提高在该任务上的性能。 GPT模型的优势在于其强大的生成能力和对上下文信息的捕捉能力。这使得GPT模型在自然语言生成、文本摘要、对话系统等领域具有广泛的应用前景。同时,GPT模型也面临一些挑战,如计算资源消耗大、训练时间长等问题。为了解决这些问题,研究人员不断提出新的优化方和扩展模型架构,如GPT-2、GPT-3等,以进一步提高模型的性能和效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值