#1329 : 平衡树·Splay
描述
小Ho:小Hi,上一次你跟我讲了Treap,我也实现了。但是我遇到了一个关键的问题。
小Hi:怎么了?
小Ho:小Hi你也知道,我平时运气不太好。所以这也反映到了我写的Treap上。
小Hi:你是说你随机出来的权值不太好,从而导致结果很差么?
小Ho:就是这样,明明一样的代码,我的Treap运行结果总是不如别人。小Hi,有没有那种没有随机因素的平衡树呢?
小Hi:当然有了,这次我就跟你讲讲一种叫做Splay的树吧。而且Splay树能做到的功能比Treap要更强大哦。
小Ho:那太好了,你快告诉我吧!
输入
第1行:1个正整数n,表示操作数量,100≤n≤200,000
第2..n+1行:可能包含下面3种规则:
1个字母'I',紧接着1个数字k,表示插入一个数字k到树中,1≤k≤1,000,000,000,保证每个k都不相同
1个字母'Q',紧接着1个数字k。表示询问树中不超过k的最大数字
1个字母'D',紧接着2个数字a,b,表示删除树中在区间[a,b]的数。
输出
若干行:每行1个整数,表示针对询问的回答,保证一定有合法的解
-
样例输入
-
6 I 1 I 2 I 3 Q 4 D 2 2 Q 2
样例输出
-
3 1
不会就套板子;
#include<bits/stdc++.h> using namespace std; #define ll long long #define pi (4*atan(1.0)) #define eps 1e-14 const int N=1e5+10,MAXN=1e6+10,inf=2147483647; const ll INF=1e18+10,mod=2147493647; int cnt, rt; int Add[MAXN]; struct Tree{ int key, num, size, fa, son[2]; }T[MAXN]; inline void PushUp(int x) { T[x].size=T[T[x].son[0]].size+T[T[x].son[1]].size+T[x].num; } inline void PushDown(int x) { if(Add[x]) { if(T[x].son[0]) { T[T[x].son[0]].key+=Add[x]; Add[T[x].son[0]]+=Add[x]; } if(T[x].son[1]) { T[T[x].son[1]].key+=Add[x]; Add[T[x].son[1]]+=Add[x]; } Add[x]=0; } } inline int Newnode(int key, int fa) //新建一个节点并返回 { ++cnt; T[cnt].key=key; T[cnt].num=T[cnt].size=1; T[cnt].fa=fa; T[cnt].son[0]=T[cnt].son[1]=0; return cnt; } inline void Rotate(int x, int p) //0左旋 1右旋 { int y=T[x].fa; PushDown(y); PushDown(x); T[y].son[!p]=T[x].son[p]; T[T[x].son[p]].fa=y; T[x].fa=T[y].fa; if(T[x].fa) T[T[x].fa].son[T[T[x].fa].son[1] == y]=x; T[x].son[p]=y; T[y].fa=x; PushUp(y); PushUp(x); } void Splay(int x, int To) //将x节点移动到To的子节点中 { while(T[x].fa != To) { if(T[T[x].fa].fa == To) Rotate(x, T[T[x].fa].son[0] == x); else { int y=T[x].fa, z=T[y].fa; int p=(T[z].son[0] == y); if(T[y].son[p] == x) Rotate(x, !p), Rotate(x, p); //之字旋 else Rotate(y, p), Rotate(x, p); //一字旋 } } if(To == 0) rt=x; } int GetPth(int p, int To) //返回第p小的节点 并移动到To的子节点中 { if(!rt || p > T[rt].size) return 0; int x=rt; while(x) { PushDown(x); if(p >= T[T[x].son[0]].size+1 && p <= T[T[x].son[0]].size+T[x].num) break; if(p > T[T[x].son[0]].size+T[x].num) { p-=T[T[x].son[0]].size+T[x].num; x=T[x].son[1]; } else x=T[x].son[0]; } Splay(x, 0); return x; } int Find(int key) //返回值为key的节点 若无返回0 若有将其转移到根处 { if(!rt) return 0; int x=rt; while(x) { PushDown(x); if(T[x].key == key) break; x=T[x].son[key > T[x].key]; } if(x) Splay(x, 0); return x; } int Prev() //返回根节点的前驱 非重点 { if(!rt)return 0; if(T[rt].num>1) return rt; if(!rt || !T[rt].son[0]) return 0; int x=T[rt].son[0]; while(T[x].son[1]) { PushDown(x); x=T[x].son[1]; } Splay(x, 0); return x; } int Succ() //返回根结点的后继 非重点 { if(!rt || !T[rt].son[1]) return 0; int x=T[rt].son[1]; while(T[x].son[0]) { PushDown(x); x=T[x].son[0]; } Splay(x, 0); return x; } void Insert(int key) //插入key值 { if(!rt) rt=Newnode(key, 0); else { int x=rt, y=0; while(x) { PushDown(x); y=x; if(T[x].key == key) { T[x].num++; T[x].size++; break; } T[x].size++; x=T[x].son[key > T[x].key]; } if(!x) x=T[y].son[key > T[y].key]=Newnode(key, y); Splay(x, 0); } } void Delete(int key) //删除值为key的节点1个 { int x=Find(key); if(!x) return; if(T[x].num>1) { T[x].num--; PushUp(x); return; } int y=T[x].son[0]; while(T[y].son[1]) y=T[y].son[1]; int z=T[x].son[1]; while(T[z].son[0]) z=T[z].son[0]; if(!y && !z) { rt=0; return; } if(!y) { Splay(z, 0); T[z].son[0]=0; PushUp(z); return; } if(!z) { Splay(y, 0); T[y].son[1]=0; PushUp(y); return; } Splay(y, 0); Splay(z, y); T[z].son[0]=0; PushUp(z); PushUp(y); } int GetRank(int key) //获得值<=key的节点个数 { if(!Find(key)) { Insert(key); int tmp=T[T[rt].son[0]].size; Delete(key); return tmp; } else return T[T[rt].son[0]].size+T[rt].num; } void Delete(int l, int r) //删除值在[l, r]中的所有节点 l!=r { if(l>r)return; if(!Find(l)) Insert(l); int p=Prev(); if(!Find(r)) Insert(r); int q=Succ(); if(!p && !q) { rt=0; return; } if(!p) { T[rt].son[0]=0; PushUp(rt); return; } if(!q) { Splay(p, 0); T[rt].son[1]=0; PushUp(rt); return; } Splay(p, q); T[p].son[1]=0; PushUp(p); PushUp(q); } char str[N]; int main() { int n; scanf("%d",&n); while(n--) { int l,r; scanf("%s%d",str,&l); if(str[0]=='I') Insert(l); else if(str[0]=='Q') { Insert(l); printf("%d\n",T[Prev()].key); Delete(l); } else { scanf("%d",&r); Delete(l,r); } } return 0; }
#1329 : 平衡树·Splay
描述
小Ho:小Hi,上一次你跟我讲了Treap,我也实现了。但是我遇到了一个关键的问题。
小Hi:怎么了?
小Ho:小Hi你也知道,我平时运气不太好。所以这也反映到了我写的Treap上。
小Hi:你是说你随机出来的权值不太好,从而导致结果很差么?
小Ho:就是这样,明明一样的代码,我的Treap运行结果总是不如别人。小Hi,有没有那种没有随机因素的平衡树呢?
小Hi:当然有了,这次我就跟你讲讲一种叫做Splay的树吧。而且Splay树能做到的功能比Treap要更强大哦。
小Ho:那太好了,你快告诉我吧!
输入
第1行:1个正整数n,表示操作数量,100≤n≤200,000
第2..n+1行:可能包含下面3种规则:
1个字母'I',紧接着1个数字k,表示插入一个数字k到树中,1≤k≤1,000,000,000,保证每个k都不相同
1个字母'Q',紧接着1个数字k。表示询问树中不超过k的最大数字
1个字母'D',紧接着2个数字a,b,表示删除树中在区间[a,b]的数。
输出
若干行:每行1个整数,表示针对询问的回答,保证一定有合法的解
-
样例输入
-
6 I 1 I 2 I 3 Q 4 D 2 2 Q 2
样例输出
-
3 1