-
6 I 1 I 2 I 3 Q 4 D 2 2 Q 2
样例输出
-
3 1
描述
小Ho:小Hi,上一次你跟我讲了Treap,我也实现了。但是我遇到了一个关键的问题。
小Hi:怎么了?
小Ho:小Hi你也知道,我平时运气不太好。所以这也反映到了我写的Treap上。
小Hi:你是说你随机出来的权值不太好,从而导致结果很差么?
小Ho:就是这样,明明一样的代码,我的Treap运行结果总是不如别人。小Hi,有没有那种没有随机因素的平衡树呢?
小Hi:当然有了,这次我就跟你讲讲一种叫做Splay的树吧。而且Splay树能做到的功能比Treap要更强大哦。
小Ho:那太好了,你快告诉我吧!
输入
第1行:1个正整数n,表示操作数量,100≤n≤200,000
第2..n+1行:可能包含下面3种规则:
1个字母'I',紧接着1个数字k,表示插入一个数字k到树中,1≤k≤1,000,000,000,保证每个k都不相同
1个字母'Q',紧接着1个数字k。表示询问树中不超过k的最大数字
1个字母'D',紧接着2个数字a,b,表示删除树中在区间[a,b]的数。
输出
若干行:每行1个整数,表示针对询问的回答,保证一定有合法的解
思路:刚刚接触splay就遇到了hiho一下的splay练习.....
刚入手学长的splay模板发现是维护序列的中序遍历顺序不变的算法,而这题是要逐个插入并且以二叉排序树的形式来维护序列以便求其前驱和后继,把splay的核心rotate和splay操作加上了二叉排序树的形式重新写了search函数和add函数,seekpre求前驱和seekafter求后继的函数。
每次求不超过k的最大数字先插入k再求前驱(特判一下原来树中是否有k)
每次删除(a,b)区间内的数把a,b插入之后把a的前驱转到树根,b的后继转到树根右孩子,得到key_value的(a,b)区间删除。码一下午写的虽然丑了点但勉强能过吧.....
#include <iostream>
#include <iomanip>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <climits>
#include <cctype>
using namespace std;
#define INF 0x3f3f3f3f
#define MP(X,Y) make_pair(X,Y)
#define PB(X) push_back(X)
#define REP(X,N) for(int X=0;X<N;X++)
#define REP2(X,L,R) for(int X=L;X<=R;X++)
#define DEP(X,R,L) for(int X=R;X>L;X--)
#define DEP2(X,R,L) for(int X=R;X>=L;X--)
#define CLR(A,X) memset(A,X,sizeof(A))
#define IT iterator
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef vector<PII> VII;
typedef vector<int> VI;
#define X first
#define Y second
#define lson(X) ((X)<<1)
#define rson(X) ((X)<<1|1)
const int MAXN=3e5;
#define key_value ts[ts[root].cld[1]].cld[0]
int n,flag;
int a[MAXN];
int St[MAXN],top;
const int null=-1;
int cnt,root;
struct node
{
int par,cld[2]; //父节点,cld[0]左儿子,cld[1]右儿子
int val,sum; //当前值,子树和
int size; //子树元素个数
} ts[MAXN];
int newnode(int key,int par)
{
int r;
if(top)
r=St[--top];
else
r=cnt++;
ts[r].val=ts[r].sum=key;
ts[r].par=par;
ts[r].size=1;
ts[r].cld[0]=ts[r].cld[1]=null;
return r;
}
//旋转,0左旋,1右旋
void rotate(int x,int k)
{
int y=ts[x].par,z=ts[y].par;
// push_down(y);push_down(x);
ts[y].cld[!k]=ts[x].cld[k];
// push_up(y);
if(ts[x].cld[k]!=null)
ts[ts[x].cld[k]].par=y;
ts[x].par=z;
if(z!=null)
ts[z].cld[(y==ts[z].cld[1])]=x;
ts[y].par=x;
ts[x].cld[k]=y;
}
//将x伸展至S下方
void splay(int x,int S)
{
for(;ts[x].par!=S;)
{
int y=ts[x].par,z=ts[y].par;
if(ts[y].par==S)
rotate(x,ts[y].cld[0]==x);
else
{
int d=(ts[ts[y].par].cld[0]==y);
if(ts[y].cld[d]==x)
rotate(x,!d),rotate(x,d);
else
rotate(y,d),rotate(x,d);
}
}
//push_up(x);
if(S==null)
root=x;
}
//获取中序遍历第k位的节点编号
int get_kth(int x,int k)
{
//push_down(x);
int ls=(ts[x].cld[0]==null?0:(ts[ts[x].cld[0]].size));
if(k==ls+1)
return x;
else if(k<=ls)
return get_kth(ts[x].cld[0],k);
else
return get_kth(ts[x].cld[1],k-ls-1);
}
//在p下插入l到r个数
int build(int p,int l,int r)
{
if(r<l)
return null;
int mid=(l+r)>>1;
int t=newnode(a[mid],p);
if(p==null)
root=t;
ts[t].cld[0]=build(t,l,mid-1);
ts[t].cld[1]=build(t,mid+1,r);
//cout<<ts[t].cld[0]<<' '<<ts[t].cld[1]<<' '<<ts[t].par<<' '<<ts[1].cld[0]<<endl;
//push_up(t);
return t;
}
void init()
{
top=cnt=0;
root=null;
root=newnode(-1,null);
ts[root].cld[1]=newnode(INF,root);
key_value=build(ts[root].cld[1],1,n);
// push_up(ts[root].cld[1]);
// push_up(root);
}
//输出结点信息
void printMess(int x)
{
printf("id:%2d ",x);
printf("fa:%2d ",ts[x].par);
printf("lc:%2d ",ts[x].cld[0]);
printf("rc:%2d ",ts[x].cld[1]);
printf("va:%2d ",ts[x].val);
printf("sz:%2d ",ts[x].size);
puts("");
}
//中序遍历
void track(int x)
{
if(x!=null)
{
track(ts[x].cld[0]);
printMess(x);
track(ts[x].cld[1]);
}
}
void debug()
{
printf("root : %2d\n",root);
track(root);
puts("");
}
//删除节点,回收内存
void erasenode(int x)
{
if(x!=null)
{
St[top++]=x;
erasenode(ts[x].cld[0]);
erasenode(ts[x].cld[1]);
}
}
void erase(int prea,int aftb)
{
splay(prea,null);
splay(aftb,root);
//debug();
erasenode(key_value);
ts[key_value].par=null;
key_value=null;
// push_up(ts[root].cld[1]);
// push_up(root);
}
//查找num的父节点
int search(int num,int cur,int par){
if(cur==null) return par;
if(ts[cur].val==num) return cur;
else if(num<ts[cur].val) search(num,ts[cur].cld[0],cur);
else search(num,ts[cur].cld[1],cur);
}
//r为当前节点,loc为其父节点 ,flag=1树内已经有该节点
int add(int key){
int r;
int par=search(key,root,null);
if(key<ts[par].val){
r=build(par,1,1);
ts[par].cld[0]=r;
ts[r].par=par;
}
else if(key>ts[par].val){
r=build(par,1,1);
ts[par].cld[1]=r;
ts[r].par=par;
}
else r=par,flag=1;
//splay(r,null);
return r;
}
int seekmax(int x){
if(x==null) return null;
else if(ts[x].cld[1]==null) return x;
else return seekmax(ts[x].cld[1]);
}
int seekmin(int x){
if(x==null) return null;
else if(ts[x].cld[0]==null) return x;
else return seekmin(ts[x].cld[0]);
}
int seekpre(int x){
if(ts[x].cld[0]!=null){
return seekmax(ts[x].cld[0]);
}
int y=ts[x].par;
while(y!=null && x==ts[y].cld[0]){
x=y;
y=ts[y].par;
}
return y;
}
int seekafter(int x){
if(ts[x].cld[1]!=null){
//cout<<66666666666<<endl;
return seekmin(ts[x].cld[1]);
}
int y=ts[x].par;
while(y!=null && x==ts[y].cld[1]){
x=y;
y=ts[y].par;
}
return y;
}
int main(){
n=0;
cnt=0;
init();
//debug();
int q;
scanf("%d",&q);
while(q--){
char op[5];
scanf("%s",op);
if(op[0]=='I'){
int num;
scanf("%d",&num);
a[1]=num;
add(num);
}
if(op[0]=='Q'){
flag=0;
int num;
scanf("%d",&num);
a[1]=num;
int r=add(num);
// debug();
// cout<<loc<<endl;
int pre=seekpre(r);
int aft=seekafter(r);
// cout<<aft<<endl;
if(flag) printf("%d\n",num);
else {
printf("%d\n",ts[pre].val);
erase(pre,aft);
}
}
if(op[0]=='D'){
int x,y;
scanf("%d%d",&x,&y);
a[1]=x;
int ra=add(x);
// debug();
a[1]=y;
int rb=add(y);
// debug();
int prea=seekpre(ra);
int aftb=seekafter(rb);
erase(prea,aftb);
}
// debug();
}
return 0;
}
/*
6
I 1
I 2
I 3
Q 4
D 2 2
Q 2
100
I 1
I 2
I 3
D 0 1
*/