图论学习八之支配集、覆盖集、独立集 与匹配

          匹配


G = <V, E>, E*(E*E)中任何两条边均不相邻,
  • 则称E*G边独立集, 也称E*G中的匹配(Matching);

(a)中, E*= { e1, e4, e7 }就是一个匹配
谓任何两条边均不相邻,通俗地讲,就是任
何两条边都没有公共顶点。

 

若在E*中加入任意一条边所得集合都不是匹配, 则称E*极大匹
;
边数最多的匹配称为最大匹配;
最大匹配的边数称为边独立数匹配数, 记作β1(G), 简记为β1

  图(a), { e2, e6 }, { e3, e5 }, { e1, e4, e7 }都是极大匹配,
{ e1, e4, e7 }是最大匹配, β1 = 3
  图(b), { e1, e3 }, { e2, e4 }, { e4, e7 }都是极大匹配,
都是最大匹配, β1 = 2

 

 

        二部图(二分图)


二部图:如果图G是一个简单图,它的顶点集合V是由两个没
有公共元素的子集X={X1,X2,..,Xm}与子集Y={Y1,Y2,…,Yn}
并且XiXj(1≤i,j≤m)之间, YsYt(1≤s,t≤m)之间没有边连接,
G称为二部图

 

下面介绍一些重要结论,是解决匹配问题的利器
  • 可以将一些看上去不像匹配的问题转化成匹配问题。

能解决90%的二分图匹配问题

结论要求记忆

 

 

        点支配集、点覆盖集、点独立集
          (都是顶点的集合)


定义 支配与支配集
  设图G = <V, E>, V*⊆V, 若对于任意vi∈V - V*, 存在vjV*,
  使得: (vi, vj)E, 则称vj支配vi, 并称V*G的一个
  配集;

 

(a)中, V*={ v1, v5 }就是一个支配集。因为
V-V*={v2, v3, v4, v6, v7}中的顶点都是V*中顶
点的邻接顶点。 通俗地讲,所谓支配集,就
V中的顶点要么是V*集合中的元素,要么
V*中的一个顶点相邻。

 

若支配集V*的任何真子集都不是支配集, 则称V*极小支配集;
顶点数最少的支配集称为最小支配集;
最小支配集中的顶点数称为支配数, 记作γ0(G)或简记为γ0

 

 

   在图(a), { v1, v5 }, { v3, v5 }{ v2, v4, v7 }都是极小支
配集, { v1, v5 }, { v4, v5 }{ v3, v6 }都是最小支配集,
γ0 = 2
  图(b)7阶星形图, { v0 }, { v1, v2, ..., v6 }极小支配集,
{ v0 }最小支配集, γ0 = 1
  图(c)为轮图W6, { v0 }, { v1, v3 }, { v1, v4 }等都是极小支
配集, 显然,

转载于:https://www.cnblogs.com/Mary-Sue/p/9342493.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值