[Vo. 1 No. 2] 用插值法巧解微分学证明题[Sep. 23, 2013]

   数学分析的微分学习题中,经常出现类似中值定理的证明题,但往往难于构造合适的辅助函数.有时候运用插值法可使题目思路清晰、证明过程简洁,以下举三例说明插值思想在微分学证明题中的巧妙之处.

  $Problem 1.$ 

[$12^{\mbox{th}}$ IMC, 2d, 4] Prove that if $f:\mathbb{R}\rightarrow\mathbb{R}$ is three times differentiable, then there exists a real number $\xi\in(-1,1)$ such that
\[
\frac{f'''(\xi)}{6}=\frac{f(1)-f(-1)}{2}-f'(0).
\]

$Proof.$ 设$p_3(x)=a_0+a_1x+a_2x^2+a_3x^3$为满足条件$p_3(-1)=f(-1),p_3(0)=f(0),p_3(1)=f(1),p_3'(0)=f'(0)$的3次插值多项式,则$p_3(x)$的系数$(a_0,a_1,a_2,a_3)$是方程
\begin{align}\label{eq1}
\left(
\begin{array}{cccc}
1 & -1 & 1 & -1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
\end{array}
\right)\left(
\begin{array}{c}
a_0 \\
a_1 \\
a_2 \\
a_3 \\
\end{array}
\right)=\left(
\begin{array}{c}
f(-1) \\
f(0) \\
f(1) \\
f'(0) \\
\end{array}
\right)
\end{align}
的解. 直接计算可得
\[
a_3=\frac{f(1)-f(-1)}{2}-f'(0)
\]
作辅助函数$R(x)=f(x)-p_3(x)$,则$R(x)=0$在$[-1,1]$上有4个实根:$-1,0,0,1$,反复运用Rolle定理可知,存在$\xi\in(-1,1)$使得
$R'''(\xi)=0$,即
\[
\frac{f'''(\xi)}{6}=a_3=\frac{f(1)-f(-1)}{2}-f'(0).
\]


  $Problem 2.$ 设$f$在$[a,b]$上三阶可微,证明:存在$\xi\in(a,b)$使成立
\begin{align}\label{eq2}
f(b)=f(a)+\frac{1}{2}(b-a)[f'(a)+f'(b)]-\frac{1}{12}(b-a)^3f'''(\xi)
\end{align}

$Proof.$ 以$a,b$为节点作$f$的三次Hermite插值多项式$H_3(x)=a_0+a_1x+a_2x^2+a_3x^3$,即$H_3(x)$的系数满足
$H_3(a)=f(a),H_3(b)=f(b),H_3'(a)=f'(a),H_3'(b)=f'(b)$.直接计算可解得
\begin{align}\label{eq3}
a_3=\frac{(b-a)[f'(a)+f'(b)]+2[f(a)-f(b)]}{(b-a)^3}
\end{align}
令$R(x)=f(x)-H_3(x)$,反复运用Rolle定理可知,存在$\xi\in(a,b)$,使得$R'''(\xi)=0$,即$f'''(\xi)=H_3'''(\xi)=6a_3$,
代入$a_3$的值即得\eqref{eq2}.

 

  $Problem 3.$ 设$f:[0,1]\rightarrow\mathbb{R}$连续可微,且满足$\int_0^1f(x)dx=0$.证明:
\begin{align}\label{eq4}
\left|\int_0^{\alpha}f(x)dx\right|\leqslant\frac{1}{8}\max\limits_{0\leqslant x\leqslant 1}\left|f'(x)\right|,\forall \alpha\in(0,1).
\end{align}

$Proof.$ 令$F(x)=\int_0^xf(t)dt$,则$F'(x)=f(x)$.设$F(x)$通过点$0,\alpha,1$的插值多项式为$p_2(x)=a_0+a_1x+a_2x^2$,则由
$p_2(0)=F(0)=0,p_2(\alpha)=F(\alpha),p_2(1)=F(1)=0$解得$a_2=\frac{F(\alpha)}{\alpha(\alpha-1)}$.
做辅助函数$R(x)=F(x)-p_2(x)$,注意到$R(0)=R(\alpha)=R(1)=0$,反复运用Rolle定理可知,存在$\xi\in(0,1)$使成立$R''(\xi)=0$.于是有
\begin{align}\label{eq5}
\left|F(\alpha)\right|=\frac{\alpha(1-\alpha)}{2}\left|F''(\xi)\right|
\leqslant \frac{1}{8}\max\limits_{0\leqslant x\leqslant 1}\left|F''(x)\right|
\end{align}
此即\eqref{eq4}.

 

转载于:https://www.cnblogs.com/liuwei9209/p/3334140.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值