插值算法

  插值,通俗来说当在一个离散的事件中,想知道某一个位置确定的值时,就可以利用插值方式计算得到,即利用已知数据估计未知位置数值。插值的方式有很多,下面介绍几种常用的插值方式。
在这里插入图片描述

一、最近邻插值(Nearest Neighbour Interpolation)

  最近邻插值法也成为零阶插值法,下图是一个一维的最近邻插值原理图,坐标轴上各点 xi-1,xi,xi+1 … 两两对半等分间隔 (红色虚线划分),以每个坐标点划分出各自的区域,最近邻插值的原理就是,各插值坐标点的值等于所在邻域坐标点的值。
  例如,插值点 x 位于坐标点 xi 的邻域,那么其值 f(x) 就等于 f(xi)。
在这里插入图片描述
                  图1 一维最近邻插值原理图
  对于二维情况来说,同理,只是插值位置的值由一维中的某个坐标点变为二维平面中的某点决定。如下图2所示,插值点P的值由与他位置最相近的Q11决定:
在这里插入图片描述
                  图2 二维最近邻插值示意图
这也是线性插值的基本原理之一。

二、单线性插值

  下图3是一个一维的线性插值示意图,不同于最近邻插值,线性插值是将坐标轴上各点 xi-1,xi,xi+1 … 的值两两直接相连为线段,得到一条连续的约束函数。在这种插值中,例如插值坐标点x,根据约束函数可以求出其值应为 f(x)。相当于两点确定一条直线,从而线段上所有点的坐标就都可以确定了。若想插值的点在确定的线段外,也可以用这种方式求得,只是这种插值方式被称为线性外插
  因为每两个坐标点之间的约束函数曲线是一次线性的线段,对插值结果而言是“线性” 的,所以该方法称为线性插值。
在这里插入图片描述
                  图3 单线性插值示意图

三、双线性插值(bilinear Interpolation)

  一维中的插值推广到二维就被称为双线性插值,也就是在一个平面中求某个点的值,也就是在两个方向上各进行一次单线性插值,假如灰度值未知的插值点为P (x, y),就是我们要求的插值点,计算方式为:
在这里插入图片描述
在这里插入图片描述

                 图4 双线性插值原理

四、三线性插值

  三线性插值就是双线性插值的三维扩展,根据周围八个点计算插值点C:
在这里插入图片描述
                  图5 三线性插值原理图
(1)首先在x轴上进行插值(横向),分别求出4个边界上的蓝色的点C00,C01,C10,C11;
(2)再在y轴上进行插值(纵向),得到绿色的C0和C1两点;
(3)最后在z轴上进行插值得到插值点C。

五、双三次插值(BiCubic Interpolation)

  双三次插值又叫立方卷积插值/ 双立方插值,它是利用了待求像素点在源图像中相邻的16个像素点的值,即这16个像素点的加权平均。在数值分析中,双三次插值是算是双线性插值的一种,与三线性插值不同。这种插值方法需要使用两个多项式插值三次函数,每个方向使用一个。
在这里插入图片描述
                 图6 双三次插值俯视原理图
  设待求插值点为图中 (i+u, j+v),已知其周围的 16 个像素坐标点 (网格) 的灰度值,所以需要计算 16 个点各自的权重。以像素坐标点 (i, j) 为例,因为该点在 y 轴和 x 轴方向上与待求插值点 (i+u, j+v) 的距离分别为 u 和 v,权重一般利用权重核计算,权重核有很多种,包括Bicubic、Mitchell和Lanczos等,

(1)常用的Bicubic核函数:
在这里插入图片描述
其中a一般取-0.5,函数波形图为:
在这里插入图片描述
利用该核函数可以计算出周围16个像素点的权重W;
再利用插值点像素值求解公式有:
在这里插入图片描述
其中A、C的S(***)表示权重,代入上面的A、C,再代入f(x,y)即得到所求点的插值结果。
(2)Lanczos核函数
不同位置的权重L(x)为:
在这里插入图片描述
函数波形图:(不同的α值分别代表缩小和放大图像)
在这里插入图片描述
计算出所有16个点的权重后,对16个值取加权平均,公式如下:
在这里插入图片描述
x为待插值位置,i为现有采样位置,S i为现有位置的像素值,则S(x)即为插值得到的i处的插值结果。
以上过程扩展到二维情况为:

在这里插入图片描述
  双三次插值不仅考虑到周围四个直接相邻像素点灰度值的影响,还考虑到它们灰度值变化率的影响。因此克服了前两种方法的不足之处,能够产生比双线性插值更为平滑的边缘,计算精度很高,处理后的图像像质损失最少,效果是最佳的。

参考资料:
https://blog.csdn.net/weixin_41311617/article/details/88943092
https://blog.csdn.net/weixin_42546737/article/details/110850247
https://blog.csdn.net/weixin_42463482/article/details/82830628
https://blog.csdn.net/qq_39478403/article/details/105796249
https://blog.csdn.net/wgx571859177/article/details/78963267

关于安规插值算法的具体实现和方法介绍,目前并未在所提供的引用中找到相关内容。然而,可以基于已知的插值理论以及常见的数值分析技术提供一种可能的方向。 ### 安规插值算法概述 插值是一种通过离散数据点构建连续函数的技术,在工程应用中有广泛用途。假设“安规插值算法”是指某种特定场景下的插值方法,则其核心目标可能是为了满足某些安全性或规范性的约束条件而设计的一种特殊插值方案。以下是常见插值方法及其扩展思路: #### 常见插值方法 1. **线性插值** 这是最简单的插值形式之一,适用于两个相邻的数据点之间建立直线关系[^3]。 2. **多项式插值** 使用高次多项式拟合一组给定的数据点。拉格朗日插值法和牛顿差分插值法是两种经典的方法[^4]。 3. **样条插值** 特别适合于平滑曲线的需求,三次样条插值因其良好的光滑性和稳定性被广泛应用[^5]。 如果“安规插值算法”涉及特殊的边界条件或者额外的安全性需求,那么它可能会结合上述基础方法并引入新的约束机制。 --- ### 可能的设计方向 考虑到实际应用场景中的安全性和规范化要求,“安规插值算法”的实现可以从以下几个方面入手: #### 数据预处理阶段 - 对输入数据进行筛选,去除异常值或噪声点。这一步骤可以通过统计学手段完成,例如设定阈值范围内的有效区间[^6]。 #### 插值过程控制 - 在传统插值公式的基础上增加限制项,确保生成的结果始终处于允许范围内。比如对于温度监测设备而言,任何预测值都不应超出物理极限值[^7]。 #### 后续验证环节 - 利用交叉检验或其他独立评估方式确认最终模型的表现是否符合预期标准[^8]。 下面给出一段伪代码表示如何基于Python环境搭建这样一个框架结构: ```python import numpy as np def safe_interpolation(x_known, y_known, x_new): """ A hypothetical implementation of 'Safety-Constrained Interpolation'. Parameters: x_known (array-like): Known data points along the X-axis. y_known (array-like): Corresponding known values on Y-axis. x_new (float or array-like): Points at which to evaluate interpolated value(s). Returns: float or ndarray: Estimated result under safety constraints. """ # Step 1: Preprocess raw dataset by removing outliers etc. filtered_x, filtered_y = preprocess_data(x_known, y_known) # Step 2: Perform standard cubic spline interpolation over cleaned subset. from scipy.interpolate import CubicSpline cs = CubicSpline(filtered_x, filtered_y) initial_estimate = cs(x_new) # Step 3: Apply additional checks according to predefined ruleset. final_output = enforce_safety_limits(initial_estimate) return final_output def preprocess_data(xs, ys): """Placeholder function representing outlier removal logic.""" pass def enforce_safety_limits(values): """Implements custom business-specific safeguards here.""" lower_bound = ... # Define minimum allowable limit per context. upper_bound = ... # Similarly establish maximum permissible boundary. clipped_results = np.clip(values, a_min=lower_bound, a_max=upper_bound) return clipped_results ``` 注意这段程序仅为示意性质,并未填充具体细节部分;实际开发过程中还需要依据项目背景进一步细化各项参数设置。 --- ### 结论 尽管当前资料库内缺乏针对所谓“安规插值算法”的确切定义说明文档,但从通用数理概念出发推测该术语很可能指向融合了一般数学运算规律同时还兼顾行业特有准则的一类定制化解决方案。希望上面分享的内容能够为您提供一定启发作用!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值