伯努利实验:
如果无穷随机变量序列 是独立同分布(i.i.d.)的,而且每个随机变量 都服从参数为p的伯努利分布,那么随机变量 就形成参数为p的一系列伯努利试验。同样,如果n个随机变量 独立同分布,并且都服从参数为p的伯努利分布,则随机变量 形成参数为p的n重伯努利试验。
伯努利试验是只有两种可能结果的单次随机试验。
- 如果试验E是一个伯努利试验,将E独立重复地进行n次,则称这一串重复的独立试验为n重伯努利试验。
一、伯努利分布:
伯努利分布亦称“零一分布”、“两点分布”。称随机变量X有伯努利分布, 参数为p(0<p<1),如果它分别以概率p和1-p取1和0为值。EX= p,DX=p(1-p)。伯努利试验成功的次数服从伯努利分布,参数p是试验成功的概率。伯努利分布是一个离散型机率分布,是N=1时二项分布的特殊情况,为纪念瑞士科学家詹姆斯·伯努利(Jacob Bernoulli 或James Bernoulli)而命名。
例子:假定重复抛掷一枚均匀硬币,如果在第i次抛掷中出现正面,令 ;如果出现反面,令 ,那么,随机变量 就形成参数为 的一系列伯努利试验,同样,假定由一个特定机器生产的零件中10%是有缺陷的,随机抽取n个进行观测,如果第i个零件有缺陷,令 ;如果没有缺陷,令 ,那么,随机变量 就形成参数为 的n重伯努利试验 (百度百科)
E(X)=p, E(X2)=q , Var(X)=pq
二、二项分布:
n 次Bernoulli试验的结果中,每次试验的分布不变,结果为1的次数 X 的分布。就是重复n次的伯努利实验。
在概率论和统计学里面,带有参数n和p的二项分布表示的是n次独立试验的成功次数的概率分布。在每次独立试验中只有取两个值,表示成功的值的概率为p,那么表示试验不成功的概率为1-p。这样一种判断成功和失败的二值试验又叫做伯努利试验。
特殊地,当n=1的时候,我们把二项分布称为伯努利分布。
超几何分布,n 次伯努利试验,每次试验分布发生改变,结果为1的次数 X 的分布,当试验分布变化不大的时候和二项分布结果相同
它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。
k事件X发生的频数;P(X=k)事件X发生k次的概率
泊松分布的期望和方差均为
特征函数为
当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算,当n趋近于无穷的时候等同于二项分布。
五、多项分布
是二项式分布的推广。二项式做n次伯努利实验,规定了每次试验的结果只有两个,如果现在还是做n次试验,只不过每次试验的结果可以有多m个,且m个结果发生的概率互斥且和为1,则发生其中一个结果X次的概率就是多项式分布。
扔骰子是典型的多项式分布。扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有k次都是点数6朝上的概率。
六、负二项分布
一种离散概率分布。满足以下条件的称为负二项分布:实验包含一系列独立的实验, 每个实验都有成功、失败两种结果,成功的概率是恒定的,实验持续到r次成功,r为正整数。