本文链接:个人站 | 简书 | CSDN
版权声明:除特别声明外,本博客文章均采用 BY-NC-SA 许可协议。转载请注明出处。
之前在介绍 DeepAR 等时间序列预测模型时,为了简单起见,我们使用了大家比较熟悉的正态分布作为示例。在实际应用中,需要根据数据本身的特点选择合适的分布。泊松分布、二项分布、以及负二项分布都可以用来刻画计数类数据。其中,泊松分布的 μ = σ 2 \mu=\sigma^2 μ=σ2,二项分布的 μ ≥ σ 2 \mu\geq\sigma^2 μ≥σ2,负二项分布的 μ ≤ σ 2 \mu\leq\sigma^2 μ≤σ2。在我日常接触的业务场景中, μ ≤ σ 2 \mu\leq\sigma^2 μ≤σ2 较为常见,为此免不了要跟负二项分布打交道。
虽然没什么必要,但是本着「有困难要上,没困难创造困难也要上」的精神,我们还是来推导一下负二项分布的相关公式。
1. 定义
一个成功概率为 p p p 的伯努利试验,不断重复,直至失败 r r r 次。此时成功的次数为一个随机变量,用 X X X 表示。称 X X X 服从负二项分布,记作 X ∼ N B ( r , p ) X\sim NB(r, p) X∼NB(r,p)。
需要注意的是,负二项分布的定义并不唯一。例如 tensorflow_probability
使用的定义与本文一致,而 scipy
则将 X X X 定义为伯努利试验成功 r r r 次时的失败次数。使用前一定要先看清楚,别问我怎么知道的。此外,Wikipedia 词条不同段落使用的定义竟然也不完全一致,或许是由不同的人编辑的。
2. 概率质量函数
X = k X=k X=k 时总共进行了 k + r k+r k+r 次试验,最后一次为失败,故前 k + r − 1 k+r-1 k+r−1 次试验总共成功了 k k k 次,失败了 r − 1 r-1 r−1 次。因此
f ( k ; r , p ) ≡ P r ( X = k ) = ( k + r − 1 k ) p k ( 1 − p ) r f(k; r, p)\equiv Pr(X=k)=\tbinom{k+r-1}{k}p^k(1-p)^r f(k;r,p)≡Pr(X=k)=(kk+r−1)pk(1−p)r
3. 期望
根据定义
E X = ∑ k = 0 ∞ k f ( k ; r , p ) = ∑ k = 1 ∞ k f ( k ; r , p ) = ∑ k = 1 ∞ k ( k + r − 1 ) ! k ! ( r − 1 ) ! p k ( 1 − p ) r = r p 1 − p ∑ k = 1 ∞ [ ( k − 1 ) + ( r + 1 ) − 1 ] ! ( k − 1 ) ! [ ( r + 1 ) − 1 ] ! p k − 1 ( 1 − p ) r + 1 = r p 1 − p ∑ k = 1 ∞ f ( k − 1 ; r + 1 , p ) \begin{aligned} \mathbb{E}X &=\sum\limits_{k=0}^{\infty}kf(k;r,p)\\ &=\sum\limits_{k=1}^{\infty}kf(k;r,p)\\ &=\sum\limits_{k=1}^{\infty}k\frac{(k+r-1)!}{k!(r-1)!}p^k(1-p)^r\\ &=\frac{rp}{1-p} \sum\limits_{k=1}^{\infty}\frac{[(k-1)+(r+1)-1]!}{(k-1)![(r+1)-1]!}p^{k-1}(1-p)^{r+1}\\ &=\frac{rp}{1-p} \sum\limits_{k=1}^{\infty}f(k-1;r+1,p) \end{aligned} EX=k=0∑∞kf(k;r,p)=k=1∑∞kf(k;r,p)=k=1∑∞kk!(r−1)!(k+r−1)!pk(1−p)r=1−prpk=1∑∞(k−1)![(r+1)−1]![(k−1)+(r+1)−1]!pk−1(1−p)r+1=1−prpk=1∑∞f(k−1;r+1,p)
令 k ′ = k − 1 k'=k-1 k′=k−1、 r ′ = r + 1 r'=r+1 r′=r+1,显然
∑ k = 1 ∞ f ( k − 1 ; r + 1 , p ) = ∑ k ′ = 0 ∞ f ( k ′ ; r ′ , p ) = 1 \sum\limits_{k=1}^{\infty}f(k-1;r+1,p)=\sum\limits_{k'=0}^{\infty}f(k';r',p)=1 k=1∑∞f(k−1;r+1,p)=k′=0∑∞f(k′;r′,p)=1
故
E X = r p 1 − p \mathbb{E}X = \frac{rp}{1-p} EX=1−prp
4. 方差
首先计算
E X 2 = ∑ k = 0 ∞ k 2 f ( k ; r , p ) = r p 1 − p ∑ k = 1 ∞ k f ( k − 1 ; r + 1 , p ) \begin{aligned} \mathbb{E}X^2 &=\sum\limits_{k=0}^{\infty}k^2f(k;r,p)\\ &=\frac{rp}{1-p}\sum\limits_{k=1}^{\infty}kf(k-1;r+1,p) \end{aligned} EX2=k=0∑∞