自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 收藏
  • 关注

原创 如何给 Transmission 配置代理

本文链接:个人站 | 简书 | CSDNTransmission 是一个简洁易用的开源 BT 客户端。在 1.4.x 及更早的版本中,Transmission 是支持配置代理的,之后的版本不知道出于什么原因移除了这一特性。而我又有配置代理的需求,所以在很长一段时间里,我不得不使用 μTorrent。macOS 升级到 Catalina 之后便不再支持 32 位程序了,垃圾 μTorrent 又不提供 64 位版本,我只好再想别的办法了。最简单的解决方案是使用 Proxifier,这个强大的工具支持在.

2020-05-10 19:34:32 1776

原创 随机变量之和的概率分布:卷积定理的简单应用

本文链接:个人站 | 简书 | CSDN版权声明:除特别声明外,本博客文章均采用 BY-NC-SA 许可协议。转载请注明出处。我们在《一个最大化条件概率问题》一文中提到,为了满足商品采购业务的需要,我们首先预测每一天的需求所服从的概率分布,然后计算若干天总需求所服从的概率分布。那么,如何将日需求的分布转化为总需求的分布呢?方法考虑一组独立的随机变量 X1,X2,⋯ ...

2020-04-25 23:26:09 4203

原创 一个最大化条件概率问题

本文链接:个人站 | 简书 | CSDN版权声明:除特别声明外,本博客文章均采用 BY-NC-SA 许可协议。转载请注明出处。背景我们在《报童问题》、《报童问题的简单解法》等文中介绍了一种通过考虑需求的不确定性来最大化销售利润的商品采购模型:首先预测需求所服从的概率分布,然后取能使得期望收益最大的分位数作为预估的需求,据此来决定采购量,对应的分位值定义为服务水平。在实际应用中,一次采购...

2020-04-17 19:25:05 885

原创 命名规范与正则表达式

本文链接:个人站 | 简书 | CSDN版权声明:除特别声明外,本博客文章均采用 BY-NC-SA 许可协议。转载请注明出处。根据 Google Python Style Guide,Python 中的参数名一般为 lower_with_under 风格。而根据 Google Java Style Guide, Java 中的参数名一般为 lowerCamelCase ...

2020-04-10 22:12:52 713

原创 时间序列预测的评估指标补遗

本文链接:个人站 | 简书 | CSDN版权声明:除特别声明外,本博客文章均采用 BY-NC-SA 许可协议。转载请注明出处。在《销量预测中的误差指标分析》一文中,我们介绍了一些时间序列点预测中常用的指标。而通过在《如何在商品采购中考虑不确定性》、《报童问题》和《报童问题的简单解法》等文中的探讨,我们已经看到,将需求预测的目标从点预测扩展为概率分布预测,可以有效降低库存管理的风险,获得更大...

2020-04-02 21:01:31 2365

原创 一维谐振子定态 Schrödinger 方程的数值解法

本文链接:个人站 | 简书 | CSDN版权声明:除特别声明外,本博客文章均采用 BY-NC-SA 许可协议。转载请注明出处。前几天整理电脑的时候发现了本科上量子力学讨论班时做的一个 Slide,觉得挺有意思的。花了点时间整理成这篇博客。一维谐振子一个质量为 mmm 的粒子,在一维势场 V(x)=12mω2x2V(x) = \dfrac12m\omega^2x^2V...

2020-03-31 23:18:27 2480 8

原创 负二项分布

本文链接:个人站 | 简书 | CSDN版权声明:除特别声明外,本博客文章均采用 BY-NC-SA 许可协议。转载请注明出处。之前在介绍 DeepAR 等时间序列预测模型时,为了简单起见,我们使用了大家比较熟悉的正态分布作为示例。在实际应用中,需要根据数据本身的特点选择合适的分布。泊松分布、二项分布、以及负二项分布都可以用来刻画计数类数据。其中,泊松分布的 μ=σ2\...

2020-03-30 19:45:34 15635

原创 使用 bash 进行服务闲置检查

重启服务之前往往需要检查一下是否还有未处理完的请求。此时可以使用 ss 命令查看端口是否还有 TCP 连接。例如:pi@raspberrypi:~ $ ss -nt state established src 192.168.1.26:8888Recv-Q Send-Q Local Address:Port Peer Address:Port ...

2020-03-18 19:55:16 98

原创 报童问题的简单解法

我们早先已经在《报童问题》一文中介绍了这个经典的商品采购模型。文中的推导略有些繁复。为了便于理解,本文将给出一个相对简单的解法。问题我们还是沿用前文的记号。问题定义如下:每天早上,报童以批发价 ccc 元/份采购当天的报纸,然后以零售价 ppp 元/份售卖。如果当天报纸没有卖完,则以 sss 元/份的价格卖给废品回收站。不失一般性,假设 p>c>sp>c>sp>...

2020-03-18 19:52:06 4227 1

原创 时间序列预测方法之 WaveNet

最近打算分享一些基于机器学习的时间序列预测方法。这是第四篇。前面已经分享了两个基于 RNN 的模型(DeepAR 和 DeepState)和一个基于 Attention 的模型(Transformer),今次将会介绍一个基于 CNN 的模型。Google DeepMind 在 2016 年发表了 WaveNet: A generative model for raw audio 。这篇文章介绍...

2020-03-18 19:50:15 3423 6

原创 时间序列预测方法之 Transformer

最近打算分享一些基于机器学习的时间序列预测方法。这是第三篇。前面介绍的 DeepAR 和 DeepState 都是基于 RNN 的模型。RNN 是序列建模的经典方法,它通过递归来获得序列的全局信息,代价是无法并行。CNN 也可以用来建模序列,但由于卷积捕捉的是局部信息,CNN 模型往往需要通过叠加很多层才能获得较大的感受野。后续我可能会~~(意思就是未必会)~~介绍基于 CNN 的时间序列预测方...

2020-03-18 19:45:52 24899 20

原创 卡尔曼滤波简介

最近学习了一种结合了深度学习和状态空间模型的时间序列预测方法(见《时间序列预测方法之 DeepState》),该方法需要用到卡尔曼滤波。卡尔曼滤波是一种高效的自回归滤波器,它能够从一系列不完全及包含噪声的测量中,估计动态系统的状态。在导航、运动控制、时间序列分析等领域都有重要应用。卡尔曼滤波的公式比较多,乍一看容易懵。根据我多年的经验,遇到让人头疼的公式,自己试着推导一遍,肯定会更头疼, 比较...

2020-03-18 19:40:39 421

原创 时间序列预测方法之 DeepState

最近打算分享一些基于机器学习的时间序列预测方法。这是第二篇。今次介绍的是 Amazon 在 NIPS 2018 上发表的文章 Deep State Space Models for Time Series Forecasting。状态空间模型(State Space Models)起源于控制工程领域,典型的应用包括卡尔曼滤波等。时间序列分析中的一些经典方法,如 ARIMA、Holt-Winte...

2020-03-18 19:38:30 3599 3

原创 分位数回归

用 ZZZ 表示一个随机变量,其概率密度函数为 f(z)f(z)f(z),累积分布函数为 F(z)F(z)F(z)。定义函数L(Z,Z^)=ρ⋅max⁡(Z−Z^,0)+(1−ρ)⋅max⁡(Z^−Z,0)L(Z,\hat Z)=\rho\cdot\max(Z-\hat Z, 0)+(1-\rho)\cdot\max(\hat Z-Z, 0)L(Z,Z^)=ρ⋅max(Z−Z^,0)+(1−...

2020-03-18 19:31:41 1598 3

原创 时间序列预测方法之 DeepAR

最近打算分享一些基于机器学习的时间序列预测方法。这是第一篇。DeepAR 是 Amazon 于 2017 年提出的基于深度学习的时间序列预测方法,目前已集成到 Amazon SageMaker 和 GluonTS 中。前者是 AWS 的机器学习云平台,后者是 Amazon 开源的时序预测工具库。传统的时间序列预测方法(ARIMA、Holt-Winters’ 等)往往针对一维时间序列本身建模,...

2020-03-18 19:21:16 17555 16

原创 概率预测的评估方法简介

概率预测的目标是在满足 calibration 的前提下尽可能提高预测的 sharpness。所谓的 calibration 指的是预测分布和观测值在统计上的一致性,而 sharpness 则是指预测分布的集中程度。下面介绍一些常见的概率预测的评估方法。1. 概率积分变换(Probability Integral Transform,PIT)对于观测值 ξ1,⋯ ,ξn\xi_1, \cdot...

2020-03-18 19:17:32 5933 1

原创 时间序列中的异常

考虑一个 ARIMA 过程生成的时间序列Yt=θ(B)α(B)ϕ(B)at,t=1,2,⋯ ,nY_t = \frac{\theta(B)}{\alpha(B)\phi(B)}a_t, \qquad t = 1, 2, \cdots, nYt​=α(B)ϕ(B)θ(B)​at​,t=1,2,⋯,n其中θ(B)\theta(B)θ(B)和ϕ(B)\phi(B)ϕ(B)的所有根都在单位圆外,α...

2020-03-18 19:15:07 914

原创 小波变换简介

1. 傅里叶变换的局限性傅里叶变换只能得到一个信号包含哪些频率成分,但无法从频域上得知信号在不同时间的频率信息,因此对频率会随着时间而改变的信号是无能为力的。举例来说:import numpy as npimport matplotlib.pyplot as pltfrom scipy.fftpack import fftt = np.linspace(0, 1, 400, endpo...

2020-03-18 19:12:31 1249 6

原创 傅里叶变换简介

1. 傅里叶级数 Fourier Series (FS)傅里叶级数得名于法国数学家约瑟夫·傅里叶,他提出任何函数都可以展开为三角级数。考虑一个在区间 [t0,t0+T][t_0, t_0+T][t0​,t0​+T] 上可积的函数 f(t)f(t)f(t),其傅里叶级数为f(t)=a02+∑n=1∞(ancos⁡2πnTt+bnsin⁡2πnTt)(1) f(t) = \dfrac{a_0}2...

2020-03-18 18:58:48 2193

原创 指数平滑方法简介

指数平滑(Exponential smoothing)是除了 ARIMA 之外的另一种被广泛使用的时间序列预测方法(关于 ARIMA,请参考 时间序列模型简介)。 指数平滑即指数移动平均(exponential moving average),是以指数式递减加权的移动平均。各数值的权重随时间指数式递减,越近期的数据权重越高。常用的指数平滑方法有一次指数平滑、二次指数平滑和三次指数平滑。1. 一次...

2020-03-18 18:56:12 2468

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除