[51nod1670] 打怪兽

本文探讨了一款名为打怪兽的游戏算法,玩家初始能量为0,面对n个能量随机分布的怪兽。文章通过数学推导和C++代码实现,详细解释了如何计算游戏结束时玩家能量值的期望*n!模1000000007的值,提供了一种递推公式和具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

lyk在玩一个叫做“打怪兽”的游戏。
游戏的规则是这样的。
lyk一开始会有一个初始的能量值。每次遇到一个怪兽,若lyk的能量值>=怪兽的能量值,那么怪兽将会被打败,lyk的能量值增加1,否则lyk死亡,游戏结束。
若怪兽全部打完,游戏也将会结束。
共有n个怪兽,由于lyk比较弱,它一开始只有0点能量值。
n个怪兽排列随机,也就是说共有n!种可能,lyk想知道结束时它能量值的期望。
由于小数点比较麻烦,所以你只需要输出期望*n!关于1000000007取模后的值就可以了!

 
例如有两个怪兽,能量值分别为{0,1},那么答案为2,因为游戏结束时有两种可能,lyk的能量值分别为0和2。期望为1,1*2!=2,所以答案为2。
Input
第一行一个数n(1<=n<=100000)。
接下来一行n个数ai表示怪兽的能量(0<=ai<n)。
Output
一行表示答案
Input示例
2
0 1
Output示例
2




可以发现一个性质,就是如果我们在第$i$局可以打第$j$个怪,那么在第$i+1$局活着的话可以打第$j$个怪。
那么我们设$f[i]$表示到第$i$轮还存活着的方案数。
显然可以递推$\large f[i] = f[i-1] \times \frac{sum[i-1]-i+1}{n-i+1}$.
$sum[i]$表示能量值小于等于$i$的怪的数量。
然后答案就是$\large \sum \left(f[i-1]-f[i] \right ) \times \left(i-1 \right)$。




#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <bits/stdc++.h>
using namespace std;
#define reg register
inline char gc() {
    static const int BS = 1 << 22;
    static unsigned char buf[BS], *st, *ed;
    if (st == ed) ed = buf + fread(st = buf, 1, BS, stdin);
    return st == ed ? EOF : *st++;
}
#define gc getchar
inline int read() {
    int res = 0;char ch=gc();bool fu=0;
    while(!isdigit(ch))fu|=(ch=='-'),ch=gc();
    while(isdigit(ch))res=(res<<3)+(res<<1)+(ch^48),ch=gc();
    return fu?-res:res;
}
#define mod 1000000007
#define ll long long
int n;
int sum[100005];
ll f[100005];
inline ll ksm(ll x, ll y)
{
    ll res = 1;
    while(y)
    {
        if (y & 1) res = res * x % mod;
        x = x * x % mod;
        y >>= 1;
    }
    return res;
}
int ans;

int main()
{
    n = read();
    for (reg int i = 1 ; i <= n ; i ++) sum[read()]++;
    for (reg int i = 1 ; i <= n ; i ++) sum[i] = sum[i - 1] + sum[i];
    f[0] = 1;
    for (reg int i = 1 ; i <= n ; i ++) f[0] = f[0] * i % mod;
    for (reg int i = 1 ; i <= n ; i ++)
        f[i] = f[i - 1] * (sum[i - 1] - i + 1) % mod * ksm(n - i + 1, mod - 2) % mod;
    for (reg int i = 1 ; i <= n ; i ++)
        ans = (ans + (f[i - 1] - f[i]) * (i - 1)) % mod;
    cout << (ans + f[n] * n) % mod << endl;
    return 0;
}

 

转载于:https://www.cnblogs.com/BriMon/p/9733241.html

基于STM32设计的数字示波器全套资料(原理图、PCB图、源代码) 硬件平台: 主控器:STM32F103ZET6 64K RAM 512K ROM 屏幕器:SSD1963 分辨率:480*272 16位色 触摸屏:TSC2046 模拟电路: OP-TL084 OP-U741 SW-CD4051 CMP-LM311 PWR-LM7805 -LM7905 -MC34063 -AMS1117-3.3 DRT-ULN2003 6.继电器:信号继电器 7.电源:DC +12V 软件平台: 开发环境:RealView MDK-ARM uVision4.10 C编译器:ARMCC ASM编译器:ARMASM 连机器:ARMLINK 实时内核:UC/OS-II 2.9实时操作系统 GUI内核:uC/GUI 3.9图形用户接口 底层驱动:各个外设驱动程序 数字示波器功能: 波形发生器:使用STM32一路DA实现正弦,三角波,方波,白噪声输出。 任意一种波形幅值在0-3.3V任意可调、频率在一定范围任意可调、方波占空比可调。调节选项可以通过触摸屏完成设置。 SD卡存储: SD卡波形存储输出,能够对当前屏幕截屏,以JPG格式存储在SD卡上。能够存储1S内的波形数据,可以随时调用查看。 数据传输:用C#编写上位机,通过串口完成对下位机的控制。(1)实现STOP/RUN功能(2)输出波形电压、时间参数(3)控制截屏(4)控制波形发生器(5)控制完成FFT(6)波形的存储和显示 图形接口: UCGUI 水平扫速: 250 ns*、500ns、1μs、5 μs、10μs、50μs、500 μs、5ms 、50ms 垂直电压灵敏度:10mV/div, 20mV/div, 50mV/div, 0.1V/div, 0,2V/div, 0.5V/div, 1V/div,2V/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值