http://poj.org/problem?id=2778
题意:给一些只由ACGT组成的模式串,问有多少种长度为n且不含有给出的模式串的DNA序列。
自动机的状态转换可以看成一个有向图(有重边的),该问题就转换成了在图上从0(trie树的根节点)开始走n步而不经过模式串末尾结点的路径数(重边算不同的路径)。
有向图又可以用一个矩阵 M 表示出来,则 Mij 表示图中 i 到 j 结点一步可达的路径数。 Mn 表示图中两点任意两点 n 步可达的路径数。
如此,本题只需将 M 构造出来,再将 Mn 的第一行的和求出来就好了。要行走路径不经过模式串末尾点,也就是使那些顶点不可达,即它们对应的那些列都是0。 Mn 用矩阵快速幂可搞。
#include<cassert>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<set>
#include<queue>
#include<map>
using namespace std;
#define rep(i,f,t) for(int i = (f), _end = (t); i <= _end; ++i)
#define dep(i,f,t) for(int i = (f), _end = (t); i >= _end; --i)
#define clr(c,x) memset(c,x,sizeof(c));
#define debug(x) cout<<"debug "<<x<<endl;
const int INF = 0x3f3f3f3f;
typedef long long int64;
inline int RD(){ int res; scanf("%d",&res); return res; }
#define Rush for(int casn = RD(), cas = 1; cas <= casn; ++cas)
//********************************************************************
typedef vector<int> Vec;
typedef vector<Vec> Mat;
const int mod = 100000;
const int Len = 110;
struct Trie{
int next[Len][4];
int fail[Len];
int end[Len];
int sz;
void init(){
sz = 0;
clr(next[0], 0);
}
int idx(char c){
if(c == 'A')return 0;
if(c == 'C')return 1;
if(c == 'T')return 2;
return 3;
}
int newnode(){
++sz;
clr(next[sz], 0);
fail[sz] = end[sz] = 0;
return sz;
}
void insert(char *s){
int u = 0;
while(*s){
int nid = idx(*s++);
int &v = next[u][nid];
if(!v) v = newnode();
u = v;
}
end[u] = 1;
}
void build(){
queue<int> q;
rep(c,0,3)if(next[0][c])q.push(next[0][c]);
while(!q.empty()){
int u = q.front();
q.pop();
int fu = fail[u];
if(end[fu]) end[u] = 1;
rep(c,0,3){
int &v = next[u][c];
if(v){
q.push(v);
fail[v] = next[fu][c];
}else{
v = next[fu][c];
}
}
}
}
void make(Mat &m){
m.resize(sz+1);
rep(i,0,sz)m[i].resize(sz+1);
rep(u,0,sz)rep(c,0,3){
int v = next[u][c];
if(!end[v]) ++m[u][v];
}
}
}ac;
char str[15];
Mat mul(const Mat &a,const Mat &b){
Mat m( a.size(), Vec(b[0].size()) );
rep(k,0,b.size()-1){
rep(i,0,a.size()-1){
if(!a[i][k])continue;
rep(j,0,b[0].size()-1){
if(!b[k][j])continue;
m[i][j] = (m[i][j] + 1LL*a[i][k] * b[k][j] % mod) % mod;
}
}
}
return m;
}
Mat pow(Mat m, int b){
Mat res(m.size(), Vec(m.size()));
rep(i,0,res.size()-1) res[i][i] = 1;
while(b){
if(b&1){
res = mul(res, m);
}
m = mul(m, m);
b >>= 1;
}
return res;
}
int main(){
int mi,n;
while(~scanf("%d%d",&mi,&n)){
ac.init();
rep(i,1,mi){
scanf("%s",str);
ac.insert(str);
}
ac.build();
Mat m;
ac.make(m);
Mat res = pow(m,n);
int ans = 0;
rep(j,0,res[0].size()-1){
ans = (ans + res[0][j]) % mod;
}
printf("%d\n",ans);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。