从小工到专家阅读笔记02

活到老,学到老

     知识上的投资总能得到最好的回报

                                                                                                                                                                                                                 ——题记

     《程序员修炼之道 从小工到专家》中有句话是这样说的:“你的知识和经验是你最重要的职业财富。遗憾的是,它们是有时效的资产,随着新技术、语言及环境的出现,你的知识会变得过时。”IT技术的发展日新月异,新技术层出不穷,具有良好的学习能力,能及时获取新知识、随时补充和丰富自己,已成为程序员职业发展的核心竞争力。 

     众所周知,现在是一个知识爆炸的时代,知识更新非常快。据测算,一个大学毕业生所学到的知识,在毕业之后2年内,有效的不过剩下5%。对于软件行业而言,这种形势更为明显,我们赖以立足的,不在于我们现在掌握了多少知识,而是我们有多强的学习能力。学习人人都会,但不同的人学习效果却千差万别。一个善于学习的人,首先应该是一个善于读书的人,懂得如何高效地学习知识,并且拥有良好的心态。唯有如此,才能成为一个卓有成效的学习者,成就卓越的程序人生。

     知道了这些,也许你会有这样的想法:“现在是不是来不及了?”我要告诉你一个故事:师旷是我国古代著名的音乐家,一天,师旷正为晋平公演奏,忽然听到晋平公叹气说:“有很多东西我还不知道,可我现在已70多岁,再想学也太迟了吧!” 师旷笑着答道:“那您就赶紧点蜡烛啊。” 晋平公有些不高兴:“你这话什么意思?求知与点蜡烛有什么关系?答非所问!你不是故意在戏弄我吧?”师旷赶紧解释:“我怎敢戏弄大王您啊!只是我听人说,年少时学习,就像走在朝阳下;壮年时学习,犹如在正午的阳光下行走;老年时学习,那便是在夜间点起蜡烛小心前行。烛光虽然微弱,比不上阳光,但总比摸黑强吧。”晋平公听了,点头称是。这个故事要告诉我们一个道理:活到老,学到老,知无涯,生有涯。每一个人自诞生之日起,学习就成为整个人生的一项基本活动,从幼年、少年、青年、中年直至老年,学习将伴随人的整个生活历程并影响人一生的发展。古人说:“书山有路勤为径,学海无涯苦作舟。”没有止境地学习,是每一个向上者必要的。人要想不断地进步,就得活到老学到老 。  

      知道活到老学到老的道理之后,我们还要做到学习静心,急于求成是学习过程中普遍存在的一种心态,这可以理解。毕竟作为一名程序员,要学的东西实在太多,而社会又是那样的浮躁,让人觉得一切都是那样的不安全、不确定,似乎只有学得快一点,才能跟上社会的脚步。可是“欲速则不达”,想快快地学,往往会形成东一榔头、西一棒槌的学习方式,每一个点都没有吃透。心沉不下去,知识也会沉不下去。要想成为真正的高手,只能静下心,一步一个脚印慢慢来。 学习是持续一生的过程,人生,就是一个自我完善过程。子曰:“吾十有五而志于学,三十而立,四十而不惑,五十而知天命,六十而耳顺,七十而从心所欲,不逾矩。”可见孔子也不是天生的圣人,也在不停地学习、进步,从“志于学”到“从心所欲,不逾矩”,孔子一共花了55年的时间。

     作为一名程序员,更需要不断丰富自己的知识库。我们所知道的东西,就像一个白色的圆圈,圈外则是黑暗的未知的世界。当圆圈越大,所接触到的黑暗部分就越多。我们只有不停地学习,才能打破更多的黑暗,找到更多光明。对于一名优秀的程序员来说,知识的广度和深度很重要,能深入把握技术细节,是写出优质代码的保证。

 

转载于:https://www.cnblogs.com/niujunyan/p/5487680.html

【源码免费下载链接】:https://renmaiwang.cn/s/os2te 大整数乘法是计算机科学中的一个重要领域,特别是在算法设计和数学计算中有着广泛应用。它涉及到处理超过标准整型变量范围的数值运算。在C++编程语言中,处理大整数通常需要自定义数据结构和算法,因为内置的`int`、`long long`等类型无法满足大整数的存储和计算需求。以下是对这个主题的详细阐述:1. **大整数数据结构**: 在C++中,实现大整数通常采用数组或链表来存储每一位数字。例如,可以使用一个动态分配的数组,每个元素表示一个位上的数字,从低位到高位排列。这种数据结构允许我们方便地进行加减乘除等操作。2. **乘法算法**: - **暴力乘法**:最直观的方法是类似于小学的竖式乘法,但效率较低,时间复杂度为O(n^2)。 - **Karatsuba算法**:由Alexander Karatsuba提出,将两个n位数的乘法转化为三个较小的乘法,时间复杂度为O(n^1.585)。 - **Toom-Cook算法**:比Karatsuba更通用,通过多项式插值和分解进行计算,有不同的变体,如Toom-3、Toom-4等。 - **快速傅里叶变换(FFT)**:当处理的大整数可以看作是多项式系数时,可以利用FFT进行高效的乘法,时间复杂度为O(n log n)。FFT在数论和密码学中尤其重要。3. **算法实现**: 实现这些算法时,需要考虑如何处理进位、溢出等问题,以及如何优化代码以提高效率。例如,使用位操作可以加速某些步骤,同时要确保代码的正确性和可读性。4. **源代码分析**: "大整数乘法全解"的源代码应包含了上述算法的实现,可能还包括了测试用例和性能比较。通过阅读源码,我们可以学习如何将理论算法转化为实际的程序,并理解各种优化技巧。5. **加说明**: 通常,源代码附带的说明会解释
内容概要:本文详细介绍了一个基于Java与Vue技术栈的向量数据库语义检索与相似文档查重系统的设计与实现。系统通过集成BERT等深度学习模型将文本转化为高维语义向量,利用Milvus等向量数据库实现高效存储与近似最近邻检索,结合前后端分离架构完成从文档上传、向量化处理、查重分析到结果可视化的完整流程。项目涵盖需求分析、系统架构设计、数据库建模、API接口规范、前后端代码实现及部署运维等多个方面,并提供了完整的代码示例和模块说明,支持多格式文档解析、智能分段、自适应查重阈值、高亮比对报告生成等功能,具备高扩展性、安全性和多场景适用能力。; 适合人群:具备一定Java和Vue开发基础的软件程师、系统架构师以及从事自然语言处理、知识管理、内容安全等相关领域的技术人员,尤其适合高校、科研机构、企业IT部门中参与智能文档管理系统开发的专业人员。; 使用场景及目标:①应用于学术论文查重、企业知识产权保护、网络内容监控、政务档案管理等需要高精度语义比对的场景;②实现深层语义理解下的文档查重,解决传统关键词匹配无法识别语义改写的问题;③构建可扩展、高可用的智能语义检索平台,服务于多行业数字化转型需求。; 阅读建议:建议读者结合提供的完整代码结构与数据库设计进行实践操作,重点关注文本向量化、向量数据库集成、前后端协同逻辑及安全权限控制等核心模块。在学习过程中应逐步部署运行系统,调试关键接口,深入理解语义检索与查重机制的作原理,并可根据实际业务需求进行功能扩展与模型优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值