快速傅里叶变换FFT / NTT

FFT

参考blog:
十分简明易懂的FFT(快速傅里叶变换)
快速傅里叶变换(FFT)详解
(下面的图片是来自于这2篇博客里面的,仔细看可以发现右下角有水印……)

系数表示法

  一个一元\(n\)次多项式\(f(x)\)可以被表示为:\[f(x) = \sum_{i = 0}^{n}a_{i}x^{i}\]
  即用\(i\)次项的系数来表示\(f(x)\),展开就是\(f(x) = {a_{0}, a_{1}...a_{n}}\)
  

点值表示法

  把多项式看做一个函数,然后带入\(n\)个不同的\(x\),可以得到\(n\)个不同的\(y\),每对\((x, y)\)就组成一个点。
  其中,\(n\)个点可以唯一确定一个\(n\)次多项式。
  即用\(n\)个点来表示一个多项式
  

一些性质:

系数表达式相乘复杂度\(n^2\),点值表达式相乘复杂度\(O(n)\),听上去很神奇的样子。。。
设2个点值表达式分别为:
\(f(x) = \{(x_{0}, f(x_{0})), (x_{1}, f(x_{1}))... (x_{n}, f(x_{n}))\}\)
\(g(x) = \{(x_{0}, g(x_{0})), (x_{1}, g(x_{1}))... (x_{n}, h(x_{n})) \}\)
那么相乘得到:
\(h(x) = \{(x_{0}, f(x_{0}) * g(x_{0})), (x_{1}, f(x_{1}) * g(x_{1})) ... (x_{n}, f(x_{n}) g(x_{n})) \}\)

朴素系数转点值:DFT 复杂度\(O(n^2)\)
朴素点值转系数:IDFT 复杂度\(O(n^2)\)

复数

\(z = a + bi\),\(a\)为实部,\(b\)为虚部。
可以表示坐标系中的一个点\((a, b)\),同时一一对应向量\(\vec{ab}\),因此也符合向量的相加法则。
在极坐标上可以表示为\((r, \theta)\)
一个性质:\((a_1, \theta_1) \cdot (a_2, \theta_2) = (a_1a_2, \theta_1 + \theta_2)\)
模长相乘,幅角相加

DFT(离散傅里叶变换)

  • 从这里开始的所有\(n\)默认可以表示为\(2^k\)
    原理:对于任意系数多项式转点值表示法,如果随意取\(n\)\(x\)值代入计算,那么每次计算都是\(O(n)\)的,总复杂度\(O(n^2)\).
    如果取一些特殊的\(x\)值,使得\(f(x)\)可以快速计算,那么就可以在保证正确性的同时优化复杂度。

如果代入一些\(x\),使得每个\(x\)的若干次方等于\(1\),那么说不定我们就可以找到一些特殊性质。那么有哪些\(x\)符合这个条件呢?
显然\(\pm 1\)\(\pm i\)都可以做到,但4个数明显不够用。

这个圆圈上面的点都可以做到.
image_1d0f7n3g9in51jvog9a1da2hln9.png-16.6kB

以原点为圆心,画一个半径为1的单位圆,那么单位圆上的所有点都可以经过若干次方得到1.
对这个圆进行\(n\)等分。
image_1d0f7s54aa6s1ph71o3cv17g40m.png-19.4kB
\(n = 8\)为例,从\((1, 0)\)开始,逆时针从\(0\)号开始标号,标到\(7\)号为止。记编号为\(k\)的点代表的复数为\(w_n^k\),那么由模长相乘,幅角相加可知\((w_n^1)^k = w_n^k\).
其中称\(w_n^1\)\(n\)次单位根,并且每个\(w\)都可以被求出:
\[w_n^k = cos\frac{k}{n}2\pi + i \cdot sin\frac{k}{n}2\pi\]

但如果我们暴力代入图中的\(w_n^0,w_n^1...w_n^{n - 1}\),复杂度还是\(n^2\),因此我们考虑寻找一下单位根的性质

单位根的性质

\(w_n^k = w_{2n}^{2k}\)
证明:\[w_n^k = cos\frac{k}{n}2\pi + i \cdot sin\frac{k}{n}2\pi\]
\[w_{2n}^{2k} = cos\frac{2k}{2n}2\pi + i \cdot sin\frac{2k}{2n}2\pi\]

显然相等

\(w_n^{k + \frac{n}{2}} = - w_n^k\)
它们所代表的点关于原点对称,所代表的复数实部相反,所代表的向量等大反向
证明:\[w_n^{\frac{n}{2}} = cos\frac{\frac{n}{2}}{n}2\pi + i \cdot sin\frac{\frac{n}{2}}{n}2\pi\]
\[= cos\pi + i \cdot sin\pi = -1\]

补充2个等式:
\[e^{ix} = cosx + i \cdot sinx\]
\[e^{i\pi} + 1 = 0\]

\[w_n^0 = w_n^n\]
它们都等于\(1\),或者\(1 + 0i\)
\[(w_n^x)^y = w_n^{xy}\]

FFT(快速傅里叶变换)

目的:系数转点值。
\[A(x) = \sum_{i = 0}^{n - 1}a_ix^i = a_0 + a_1x + a_2x^2+...+a_{n - 1}x^{n - 1}\]
按下标奇偶性把\(A(x)\)分成2半,右边再提一个x.
\[A(x) = (a_0 + a_2x^2 + ... + a_{n - 2}x^{n - 2}) + (a_1x + a_3x^3 + ... + a_{n - 1}x^{n - 1})\]
\[A(x) = (a_0 + a_2x^2 + ... + a_{n - 2}x^{n - 2}) + x(a_1 + a_3x^2 + ... + a_{n - 1}x^{n - 2})\]
\[A_1(x) = a_0 + a_2x + a_4x^2 + ... + a_{n - 2}x^{\frac{n}{2} - 1}\]
\[A_2(x) = a_1 + a_3x + a_5x^2 + ... + a_{n - 1}x^{\frac{n}{2} - 1}\]
\[\Longrightarrow A(x) = A_1(x^2) + xA_2(x^2)\]

\(k < \frac{n}{2}\),代入\(w_n^k = x \longrightarrow A(x)\)
\[\Longrightarrow A(w_n^k) = A_1((w_n^k)^2) + W_n^k A_2((w_n^k)^2)\]
\[ = A_1(w_n^{2k}) + w_n^k A_2(w_n^{2k})\]
\[ = A_1(w_{\frac{n}{2}}^k) + w_n^kA_2(w_{\frac{n}{2}}^k)\]
再代入\(k + \frac{n}{2}\)

再考虑另一半:

代入\(k + \frac{n}{2}\)
\[A(w_n^{k + \frac{n}{2}}) = A_1(w_n^{2k + n}) + w_n^{k + \frac{n}{2}}A_2(w_n^{2k + n})\]
可以发现:
\[w^{k + \frac{n}{2}}_n = w_n^k \cdot w_n^{\frac{n}{2}} = -w^k_n\]
\[w_n^{2k + n} = w_n^{2k} \cdot w_n^n = w_n^{2k}\]
因此可以得到:
\[A(w_n^{k + \frac{n}{2}}) = A_1(w_n^{2k}) - w_n^kA_2(w_n^{2k})\]
\[ = A_1(w_{\frac{n}{2}}^k) - w_n^kA_2(w_{\frac{n}{2}}^{k})\]

于是可以发现,这2个式子是长得很像的,因此我们可以在求出\(A(w_n^k)\)\(O(1)\)的求出\(A(w_n^{k + \frac{n}{2}})\).

因为将式子一分为二后,每一部分仍然是一个子问题,因此可以用分治来做到\(nlogn\)求这个东西。

每次回溯时只扫前面一半序列,即可得到后面一半序列的答案,长度为1时只有一个常数项,可以直接返回。

大致就是把\(f(x)\)\(g(x)\)分别转换为点值表达,然后\(O(n)\)的处理乘积,得到\(h(x)\)的点值表达

IFFT(快速傅里叶逆变换)

目的:点值转系数
\((y_0, y_1, y_2..., y_{n - 1})\)\((a_0, a_1, a_2, ..., a_{n - 1})\)的傅里叶变换(点值表达)。
设有另一个向量\((c_0, c_1, c_2, ..., c_{n - 1})\),满足\(c_k = \sum_{i = 0}^{n - 1}y_i(w_n^{-k})^i\).
即多项式\(B(x) = y_0 + y_1x + y_2x^2 + ... + y_{n - 1}x^{n - 1}\)\(w_n^0, w_n^{-1},w_n^{-2}...w_{n - 1}^{-(n - 1)}\)处的点值表示。
于是对\(c_k = \sum_{i = 0}^{n - 1}y_i(w_n^{-k})^i\)进行化简
\[c_k = \sum_{i = 0}^{n - 1}y_i(w_n^{-k})^i\]
\[ = \sum_{i = 0}^{n - 1}(\sum_{j = 0}^{n - 1}a_j(w_n^i)^j)(w_n^{-k})^i\]
\[ = \sum_{i = 0}^{n - 1}(\sum_{j = 0}^{n - 1}a_j(w_n^j)^i)(w_n^{-k})^i\]
\[ = \sum_{i = 0}^{n - 1}(\sum_{j = 0}^{n - 1}a_j(w_n^j)^i(w_n^{-k})^i)\]
\[ = \sum_{i = 0}^{n - 1}\sum_{j = 0}^{n - 1}a_j(w_n^j)^i(w_n^{-k})^i\]
\[ = \sum_{i = 0}^{n - 1} \sum_{j = 0}^{n - 1}a_j(w_n^{j - k})^i\]
\[ = \sum_{j = 0}^{n - 1}a_j (\sum_{i = 0}^{n - 1}(w_n^{j - k})^i)\]

\(S(n) = \sum_{i = 0}^{n - 1}x^i\),将\(w_n^k\)代入得:\[S(w_n^k) = 1 + (w_n^k) + (w_n^k)^2 + ... + (w_n^k)^{n - 1}\]
\(k != 0\)得,等式两边同乘\(w_n^k\)得:\[w_n^kS(w_n^k) = w_n^k + (w_n^k)^2 + ... + (w_n^k)^n\]
两式相减得:
\[w_n^kS(w_n^k) - S(w_n^k) = (w_n^k)^n - 1\]
\[S(w_n^k) = \frac{(w_n^k)^n - 1}{w_n^k - 1}\]
\[S(w_n^k) = \frac{(w_n^k)^n - 1}{w_n^k - 1}\]
\[S(w_n^k) = \frac{1 - 1}{w_n^k - 1} = \frac{0}{w_n^k - 1}\]
\(\longrightarrow\)分子为0,分母不为0

  • \(k != 0\)时,\(S(w_n^k) = 0\);\(\quad\)\(k = 0\)时,\(S(w_n^0) = n\)
    继续考虑刚才的式子:\(c_k = \sum_{j = 0}^{n - 1}a_j (\sum_{i = 0}^{n - 1}(w_n^{j - k})^i)\)
  • \(j != k\)时,值为\(0\);\(\quad\)\(j = k\)时,值为\(n\)
    因此:\[c_k = na_k \Longrightarrow a_k = \frac{c_k}{n}\]
    于是我们得到了一个\(O(1)\)把一个点值变成一个系数的方法。
递归实现

不断将当前序列一分为二,递归求解。
但效率过低……

迭代实现

image_1d0jqi7rt3d99pf1cvk5cv1tejp.png-25.1kB
观察到原序列和要求的序列之间有神奇的联系,,,
要求的序列的第i项就是原序列下标二进制的翻转。
因此我们可以\(O(n)\)预处理出要求的序列是怎么排的,然后再不断向上合并。

一些具体一点的东西:
因为求\(A_1,A_2\)的过程可以看做求一个新的\(A\),所以是一个子问题,对于分治区间\([l, r]\),目标是求当前区间的\(A\)数组,要用到的是当前\(A\)\(A_1\)\(A_2\)
\([l, mid]\)\(A_1\)\([mid + 1, r]\)\(A_2\)
每次,我们从\([l, mid]\)中的某个位置\(A[l + k]\)中取出当前所求\(A\)的对应\(A_1\),从\(A[l + k + mid]\)中取出当前所求\(A\)的对应的\(A_2\),然后用这2个值计算出\([l ,r]\)\(A[l + k]\)\(A[l + k + mid]\)

#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 10001000
#define ld double
#define LL long long

const double pi = acos(-1);
int n, m, maxn, lim = 1, len;
int Next[AC];//预处理出i对应的位置Next[i], 易知i = Next[Next[i]],所以不能交换2次,只能交换1次,不然就换回来了

struct node{
    ld x, y;
    node (ld xx = 0, ld yy = 0) {x = xx, y = yy;}
}a[AC], b[AC];

node operator * (node x, node y) {return node(x.x * y.x - x.y * y.y, x.x * y.y + x.y * y.x);} 
node operator - (node x, node y) {return node(x.x - y.x, x.y - y.y);}
node operator + (node x, node y) {return node(x.x + y.x, x.y + y.y);}

inline int read()
{
    int x = 0;char c = getchar();
    while(c > '9' || c < '0') c = getchar();
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x;
}

void pre()
{
    n = read(), m = read();
    for(R i = 0; i <= n; i ++) a[i].x = read();
    for(R i = 0; i <= m; i ++) b[i].x = read();
    while(lim <= n + m) lim <<= 1, ++ len;//寻找长度最接近的,可以覆盖a * b的2^len
    for(R i = 0; i < lim; i ++)//一个长度为len的二进制串 = lim - 1
        Next[i] = ((Next[i >> 1]) >> 1) | ((i & 1) << (len - 1));
}
//分治的最下面一层是求长度为1的,只有一个常数项的多项式,系数即为给定的系数值

void FFT(node *A, int opt)
{
    for(R i = 0; i < lim; i ++)
        if(i < Next[i]) swap(A[i], A[Next[i]]);
    for(R i = 1; i < lim; i <<= 1)//上一层(被更新层)长度为2i,因为长度为1的不用处理……,所以要< lim,这样才可以保证2i <= lim
    {//弧度 = 2pi / 2i = pi / i,那么因为是单位圆上的点,所以横坐标就是cos(弧度), 纵坐标就是sin(弧度)
        node W(cos(pi / i), opt * sin(pi / i));//但是在还原为系数的时候用的是w_n^{-k},所以相当于把算出的纵坐标变成相反数,即乘opt
        for(R r = i << 1, j = 0; j < lim; j += r)//枚举上一层每段的段首
        {
            node w(1, 0);//下面枚举上一层的一半,更新j + k时顺便更新j + k + i
            for(R k = 0; k < i; k ++, w = w * W)//每次循环一次将w更新为下一个w_n^k
            {
                node x = A[j + k], y = w * A[j + k + i];
                A[j + k] = x + y, A[j + k + i] = x - y;
            }
        }
    }   
}

void work()
{
    FFT(a, 1);
    FFT(b, 1);
    for(R i = 0; i < lim; i ++) a[i] = a[i] * b[i];
    FFT(a, -1);
    for(R i = 0; i <= n + m; i ++) printf("%d ", (int)(a[i].x / lim + 0.5));
}

int main()
{
    freopen("in.in", "r", stdin);
    pre();
    work();
    fclose(stdin);
    return 0;
}

NTT

用原根代替单位根。

\((a, p) = 1\)\(p > 1\),那么对于满足\(a^n \equiv 1\quad(mod \quad p)\)最小的\(n\),称为\(a\)是模\(p\)意义下的阶。

原根

\(p \in N^+, a \in N\),若\(\delta_p(a) = \phi(p)\),则称\(a\)\(p\)的一个原根,原根个数不唯一。若\(p\)有原根,那么它一定有\(\phi(\phi(p))\)个原根。

\(m\)有原根的充要条件是\(m = 2, 4, p^a,2p^a\),其中\(p\)为奇素数\(a \ge 1\)

\(p\)为素数,\(g\)\(p\)的原根,那么\(g^i\%p(1 < g < p, 0 < i < p)\)的结果互不相同

一个结论:
\[w_n \equiv g^{\frac{p - 1}{n}} \quad (mod \quad p)\]
\(p\)\(998244353\)时,原根为\(3\).

求任意质数的原根:对于质数\(p\),质因子分解\(p - 1\)得到\(p_i\),若\[g^{\frac{p - 1}{p_i} != 1} \quad (mod \quad p)\]
恒成立,则\(g\)\(p\)的原根。
实现方式:
基于普通FFT,对于opt = 1的情况,直接用\(g^{\frac{p - 1}{p_i}}\)代替,否则需要用\(g^{-\frac{p - 1}{p_i}}\)来代替,即\(g^{-k} = \frac{1}{g^k} = (\frac{1}{g})^k = inv[g] ^ k\)
(在FFT中,因为\(w^{-k}\)就相当于是向反方向转了相同角度,所以只需要乘\(-1\)即可)

#include<bits/stdc++.h>
using namespace std;
#define R register int
#define p 998244353
#define AC 10001000
#define LL long long

const int G = 3, Gi = 332748118;
int n, m, lim = 1, len;
int a[AC], b[AC], rev[AC];

inline int read()
{
    int x = 0;char c = getchar();
    while(c > '9' || c < '0') c = getchar();
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x;
}

int qpow(int x, int have)
{
    int rnt = 1;
    while(have)
    {
        if(have & 1) rnt = 1LL * rnt * x % p;
        x = 1LL * x * x % p, have >>= 1;
    }
    return rnt;
}

void pre()
{
    n = read(), m = read();
    for(R i = 0; i <= n; i ++) a[i] = read();
    for(R i = 0; i <= m; i ++) b[i] = read();
    while(lim <= n + m) lim <<= 1, ++ len;
    for(R i = 0; i < lim; i ++) 
        rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));   
}

void NTT(int *A, int opt)
{
    for(R i = 0; i < lim; i ++)
        if(i < rev[i]) swap(A[i], A[rev[i]]);
    for(R i = 1; i < lim; i <<= 1)
    {
        //int W = qpow((opt > 0) ? G : Gi, (p - 1) / (i << 1));
        LL W = qpow(opt == 1 ? G : Gi , (p - 1) / (i << 1));
        for(R r = i << 1, j = 0; j < lim; j += r)
            for(R w = 1, k = 0; k < i; k ++, w = (1LL * w * W) % p)
            {
                int x = A[j + k], y = 1LL * w * A[j + k + i] % p;
                A[j + k] = (x + y) % p, A[j + k + i] = (x - y + p) % p;
            }
    } 
}

void work()
{
    NTT(a, 1);
    NTT(b, 1);
    for(R i = 0; i < lim; i ++) a[i] = 1LL * a[i] * b[i] % p;
    NTT(a, -1);
    int inv = qpow(lim, p - 2);//lim的逆元
    for(R i = 0; i <= n + m; i ++) printf("%lld ", 1LL * a[i] * inv % p); 
    printf("\n");
}

int main()
{
    freopen("in.in", "r", stdin);
    pre();
    work();
    fclose(stdin);
    return 0;
}

扩展知识

分治fft/倍增fft求一行的斯特林数
分治fft

转载于:https://www.cnblogs.com/ww3113306/p/10234916.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值