信号与系统复习笔记——傅里叶变换

信号与系统复习笔记——傅里叶变换

周期信号的傅里叶级数表示

特征函数

假设LTI系统的输入为 x ( t ) = e s t x(t) = e^{st} x(t)=est 输出为:

y ( t ) = e s t ∗ h ( t ) = ∫ − ∞ + ∞ e s ( t − τ ) h ( τ ) d τ = e s t ∫ − ∞ + ∞ e − s τ h ( τ ) d τ = x ( t ) H ( s ) y(t) = e^{st} \ast h(t) = \int_{-\infty}^{+\infty} e^{s(t - \tau)} h(\tau) d\tau = e^{st}\int_{-\infty}^{+\infty}e^{-s\tau}h(\tau) d\tau = x(t)H(s) y(t)=esth(t)=+es(tτ)h(τ)dτ=est+esτh(τ)dτ=x(t)H(s)

定义LTI系统的特征函数为:

H ( s ) = ∫ − ∞ + ∞ e − s τ h ( τ ) d τ H(s) = \int_{-\infty}^{+\infty}e^{-s\tau}h(\tau) d\tau H(s)=+esτh(τ)dτ

CT周期函数的傅里叶级数表示

对于周期函数 x T ( t ) x_T(t) xT(t) 来说,周期为 T T T ,角频率为 ω 0 = 2 π T \omega_0 = \frac{2 \pi}{T} ω0=T2π ,那么其傅里叶级数表示的形式为:

x T ( t ) = ∑ k = − ∞ + ∞ a k e j k ω 0 t , (综合公式) x_T(t) = \sum_{k = -\infty}^{+\infty} a_k e^{jk\omega_0t} ,\text{(综合公式)} xT(t)=k=+akejkω0t,(综合公式)

其中 a k a_k ak x T ( t ) x_T(t) xT(t) k k k 次谐波的傅里叶级数的系数。

其中 e j k ω 0 t e^{jk\omega_0t} ejkω0t 称为旋转因子,而 e − j k ω 0 t e^{-jk\omega_0t} ejkω0t 称为筛选因子,确定傅里叶系数的方法是两边同时乘以系数为 n n n 的筛选因子:

x T ( t ) e − j n ω 0 t = ∑ k = − ∞ + ∞ a k e j k ω 0 t e − j n ω 0 t x_T(t) e^{-jn\omega_0t} = \sum_{k = -\infty}^{+\infty} a_k e^{jk\omega_0t} e^{-jn\omega_0t} xT(t)ejnω0t=k=+akejkω0tejnω0t

同时在一个周期内做积分:

∫ 0 T x T ( t ) e − j n ω 0 t d t = ∫ 0 T ∑ k = − ∞ + ∞ a k e j k ω 0 t e − j n ω 0 t d t = ∑ k = − ∞ + ∞ a k ∫ 0 T e j ( k − n ) ω 0 t d t \int_0^T x_T(t) e^{-jn\omega_0t} dt = \int_0^T \sum_{k = -\infty}^{+\infty} a_k e^{jk\omega_0t} e^{-jn\omega_0t} dt = \sum_{k = -\infty}^{+\infty} a_k \int_0^T e^{j(k-n)\omega_0t} dt 0TxT(t)ejnω0tdt=0Tk=+akejkω0tejnω0tdt=k=+ak0Tej(kn)ω0tdt

对于积分 ∫ 0 T e j ( k − n ) ω 0 t d t \int_0^T e^{j(k-n)\omega_0t} dt 0Tej(kn)ω0tdt 来说,当 k = n k = n k=n 的时候,积分值为 T T T ,否则等于 0 0 0 ,也就是:

∫ 0 T x T ( t ) e − j n ω 0 t d t = T a n \int_0^T x_T(t) e^{-jn\omega_0t} dt = Ta_n 0TxT(t)ejnω0tdt=Tan

即:

a n = 1 T ∫ 0 T x T ( t ) e − j n ω 0 t d t , (分析公式) a_n = \frac{1}{T} \int_0^T x_T(t) e^{-jn\omega_0t} dt,\text{(分析公式)} an=T10TxT(t)ejnω0tdt,(分析公式)

CT的傅里叶级数的性质

性质周期信号傅里叶系数
线性 A x ( t ) + B y ( t ) Ax(t) +By(t) Ax(t)+By(t) A a k + B b k Aa_k + Bb_k Aak+Bbk
时移 x ( t − t 0 ) x(t - t_0) x(tt0) a k e − j k ω 0 t 0 a_k e^{-jk\omega_0t_0} akejkω0t0
频移 x ( t ) e j M ω 0 t x(t)e^{jM\omega_0t} x(t)ejMω0t a k − M a_{k - M} akM
共轭 x ∗ ( t ) x^*(t) x(t) a − k ∗ a^*_{-k} ak
时间翻转 x ( − t ) x(-t) x(t) a − k a_{-k} ak
时域尺度变换 x ( α t ) x(\alpha t) x(αt) a k ( T = T / α ) a_k(T=T/\alpha) ak(T=T/α)
周期卷积 ∫ T x ( τ ) y ( t − τ ) d τ \int_T x(\tau)y(t-\tau) d\tau Tx(τ)y(tτ)dτ T a k b k Ta_kb_k Takbk
相乘 x ( t ) y ( t ) x(t)y(t) x(t)y(t) ∑ l = − ∞ + ∞ a l b k − l \sum_{l = -\infty}^{+\infty}a_l b_{k-l} l=+albkl
微分 d x ( t ) d t \frac{dx(t)}{dt} dtdx(t) j k ω 0 a k jk\omega_0a_k jkω0ak
积分 ∫ − ∞ t x ( t ) d t \int_{-\infty}^t x(t) dt tx(t)dt 1 j k ω 0 a k \frac{1}{jk\omega_0}a_k jkω01ak
实信号的共轭对称性 x ( t ) x(t) x(t) 为实信号 a k = − a k ∗ a_k = -a^*_k ak=ak
实偶信号 x ( t ) x(t) x(t) 为实偶信号 a k a_k ak 为实偶函数
实奇信号 x ( t ) x(t) x(t) 为实奇信号 a k a_k ak 为纯虚奇函数
实信号的奇偶分解 x e ( t ) = E v { x ( t ) } , x o ( t ) = O d { x ( t ) } x_e(t) = Ev\{x(t)\}, x_o(t) = Od\{x(t)\} xe(t)=Ev{x(t)},xo(t)=Od{x(t)} 并且 x ( t ) x(t) x(t) 为实信号 ℜ { a k } , j ℑ { a k } \Re\{a_k\},j\Im\{a_k\} {ak},j{ak}
周期信号的帕瓦尔定理 x ( t ) x(t) x(t) 1 T ∫ T ∣ x ( t ) ∣ 2 d t = ∑ k = − ∞ + ∞ ∣ a k ∣ 2 \frac{1}{T} \int_T |x(t)|^2 dt = \sum_{k = -\infty}^{+\infty} |a_k|^2 T1Tx(t)2dt=k=+ak2

DT周期信号的傅里叶级数表示

定义周期信号的周期为 N N N ,有 x [ n ] = x [ n + N ] x[n] = x[n + N] x[n]=x[n+N] 。而 ω 0 = 2 π N \omega_0 = \frac{2\pi}{N} ω0=N2π 为基波频率。则 k k k 次谐波转子为:

ϕ k [ n ] = e j k ω 0 n \phi_k[n] = e^{jk\omega_0n} ϕk[n]=ejkω0n

并且,因为再离散时间中, k k k n n n 均为整数的话,那么 ϕ k [ n ] \phi_k[n] ϕk[n] 也为关于 k k k 周期为 N N N 的函数,也就是:

ϕ [ n ] = ϕ k + r N [ n ] \phi[n] = \phi_{k + rN}[n] ϕ[n]=ϕk+rN[n]

这就是说,周期为 N N N 的离散时间信号,其傅里叶级数的系数只有 N N N 个,并且是一个周期为 N N N 的序列。因此DT周期信号的傅里叶级数表示为:

x [ n ] = ∑ k = < N > a k e j k ω o n , (综合公式) x[n] = \sum_{k = <N>} a_k e^{jk\omega_on},\text{(综合公式)} x[n]=k=<N>akejkωon,(综合公式)

对于连续的 N N N 个取值:

x [ 0 ] = ∑ k = < N > a k , x [ 1 ] = ∑ k = < N > a k e j k ω 0 , … , x [ N − 1 ] = ∑ k = < N > a k e j k ω 0 ( N − 1 ) x[0] = \sum_{k=<N>} a_k, x[1] = \sum_{k=<N>} a_k e^{jk\omega_0},\ldots, x[N-1] = \sum_{k=<N>} a_k e^{jk\omega_0(N-1)} x[0]=k=<N>ak,x[1]=k=<N>akejkω0,,x[N1]=k=<N>akejkω0(N1)

这些是 N N N 个线性独立的方程,可以直接解出 N N N 个系数的值。若想通过CT同样的方法,有以下的事实:

∑ n = < N > e j k ω 0 n = N ( k = 0 , ± N , ± 2 N , … ) \sum_{n = <N>} e^{jk\omega_0}n = N (k = 0,\pm N,\pm 2N,\ldots) n=<N>ejkω0n=N(k=0,±N,±2N,)

否则其他情况下等于 0 0 0

那么同样的,先乘以关于 r r r 的提取因子,然后在一个周期中求和:

∑ n = < N > x [ n ] e − j r ω 0 n = ∑ n = < N > ∑ k = < N > a k e j ( k − r ) ω 0 n = ∑ k = < N > a k ∑ n = < N > e j ( k − r ) ω 0 n \sum_{n = <N>} x[n]e^{-jr\omega_0 n} = \sum_{n = <N>} \sum_{k = <N>} a_k e^{j(k - r)\omega_0 n} = \sum_{k = <N>} a_k \sum_{n = <N>} e^{j(k - r)\omega_0 n} n=<N>x[n]ejrω0n=n=<N>k=<N>akej(kr)ω0n=k=<N>akn=<N>ej(kr)ω0n

对于和式 ∑ n = < N > e j ( k − r ) ω 0 n \sum_{n = <N>} e^{j(k - r)\omega_0 n} n=<N>ej(kr)ω0n k = r + c N k = r + cN k=r+cN 的时候,即 k − r k-r kr N N N 的整数倍的时候,又因为在一个周期内只有一次 k − r k-r kr N N N 的整数倍,且对应 k = r k = r k=r ,于是右边就等于 N a r Na_r Nar ,因此:

a r = 1 N ∑ n = < N > x [ n ] e − j r ω 0 n , (分析公式) a_r = \frac{1}{N} \sum_{n = <N>} x[n]e^{-jr\omega_0 n},\text{(分析公式)} ar=N1n=<N>x[n]ejrω0n,(分析公式)

DT的傅里叶级数的性质

性质周期信号傅里叶系数
线性 A x [ n ] + B y [ n ] Ax[n] +By[n] Ax[n]+By[n] A a k + B b k Aa_k + Bb_k Aak+Bbk
时移 x [ n − n 0 ] x[n - n_0] x[nn0] a k e − j k ω 0 n 0 a_k e^{-jk\omega_0n_0} akejkω0n0
频移 x [ n ] e j M ω 0 n x[n]e^{jM\omega_0n} x[n]ejMω0n a k − M a_{k - M} akM
共轭 x ∗ [ n ] x^*[n] x[n] a − k ∗ a^*_{-k} ak
时间翻转 x [ − n ] x[-n] x[n] a − k a_{-k} ak
时域尺度变换 x ( m ) [ n ] = x [ n / m ] x_{(m)}[n]=x[n/m] x(m)[n]=x[n/m] 1 m a k ( N = N m ) \frac{1}{m}a_k(N=Nm) m1ak(N=Nm)
周期卷积 ∑ r = < N > x [ r ] y [ n − r ] d τ \sum_{r = <N>} x[r]y[n-r] d\tau r=<N>x[r]y[nr]dτ N a k b k Na_kb_k Nakbk
相乘 x [ n ] y [ n ] x[n]y[n] x[n]y[n] ∑ l = < N > a l b k − l \sum_{l = <N>} a_l b_{k-l} l=<N>albkl
一阶差分 x [ n ] − x [ n − 1 ] x[n] - x[n - 1] x[n]x[n1] ( 1 − e − j k ω 0 ) a k (1 - e^{-jk\omega_0})a_k (1ejkω0)ak
求和 ∑ k = − ∞ n x [ k ] \sum_{k = -\infty}^{n} x[k] k=nx[k] 1 ( 1 − e − j k ω 0 ) a k \frac{1}{(1 - e^{-jk\omega_0})}a_k (1ejkω0)1ak
实信号的共轭对称性 x [ n ] x[n] x[n] 为实信号 a k = − a k ∗ a_k = -a^*_k ak=ak
实偶信号 x [ n ] x[n] x[n] 为实偶信号 a k a_k ak 为实偶函数
实奇信号 x [ n ] x[n] x[n] 为实奇信号 a k a_k ak 为纯虚奇函数
实信号的奇偶分解 x e [ n ] = E v { x [ n ] } , x o [ n ] = O d { x [ n ] } x_e[n] = Ev\{x[n]\}, x_o[n] = Od\{x[n]\} xe[n]=Ev{x[n]},xo[n]=Od{x[n]} 并且 x [ n ] x[n] x[n] 为实信号 ℜ { a k } , j ℑ { a k } \Re\{a_k\},j\Im\{a_k\} {ak},j{ak}
周期信号的帕瓦尔定理 x [ n ] x[n] x[n] 1 N ∑ n = < N > ∣ x [ n ] ∣ 2 = ∑ k = < N > ∣ a k ∣ 2 \frac{1}{N} \sum_{n = <N>} |x[n]|^2 = \sum_{k = <N>} |a_k|^2 N1n=<N>x[n]2=k=<N>ak2

连续时间傅里叶变换

连续时间非周期的傅里叶表示

假设连续时间的周期信号为 x T ( t ) x_T(t) xT(t) ,对应的单个周期信号为 x ( t ) x(t) x(t) ,因为:

a k = 1 T ∫ − T / 2 T / 2 x T ( t ) e − j k ω 0 t d t = 1 T ∫ − ∞ + ∞ x ( t ) e − j k ω 0 t d t a_k = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{-jk\omega_0t} dt = \frac{1}{T} \int_{-\infty}^{+\infty} x(t) e^{-jk\omega_0t} dt ak=T1T/2T/2xT(t)ejkω0tdt=T1+x(t)ejkω0tdt

定义 T a k Ta_k Tak 的包络函数为:

X ( j ω ) = ∫ − ∞ + ∞ x ( t ) e − j ω t d t , (分析公式) X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt,\text{(分析公式)} X()=+x(t)etdt,(分析公式)

此时 a k a_k ak 可以表示为:

a k = 1 T X ( j k ω 0 ) a_k = \frac{1}{T} X(jk\omega_0) ak=T1X(jkω0)

并且:

x T ( t ) = ∑ k = − ∞ + ∞ 1 T X ( j k ω 0 ) e j k ω 0 t = 1 2 π ∑ k = − ∞ + ∞ X ( j k ω 0 ) e j k ω 0 t ω 0 x_T(t) = \sum_{k = -\infty}^{+\infty} \frac{1}{T}X(jk\omega_0) e^{jk\omega_0t} = \frac{1}{2\pi} \sum_{k = -\infty}^{+\infty} X(jk\omega_0) e^{jk\omega_0t} \omega_0 xT(t)=k=+T1X(jkω0)ejkω0t=2π1k=+X(jkω0)ejkω0tω0

接下来进行周期延拓,即 lim ⁡ T → ∞ x T ( t ) = x ( t ) \lim_{T \to \infty} x_T(t) = x(t) limTxT(t)=x(t) 有:

x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( j ω ) e j ω t d ω , (综合公式) x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega,\text{(综合公式)} x(t)=2π1+X()etdω,(综合公式)

上面两式称为傅里叶变换。

连续时间傅里叶变换的性质

性质周期信号傅里叶系数
线性 A x ( t ) + B y ( t ) Ax(t) +By(t) Ax(t)+By(t) A X ( j ω ) + B Y ( j ω ) AX(j\omega) + BY(j\omega) AX()+BY()
时移 x ( t − t 0 ) x(t - t_0) x(tt0) X ( j ω ) e − j ω t 0 X(j\omega) e^{-j\omega t_0} X()et0
频移 x ( t ) e j ω 0 t x(t)e^{j\omega_0 t} x(t)ejω0t X ( j ( ω − ω 0 ) ) X(j(\omega - \omega_0)) X(j(ωω0))
共轭 x ∗ ( t ) x^*(t) x(t) X ∗ ( − j ω ) X^*(-j\omega) X()
时间翻转 x ( − t ) x(-t) x(t) X ( − j ω ) X(-j\omega) X()
时域尺度变换 x ( α t ) x(\alpha t) x(αt) 1 ∣ a ∣ X ( j ω a ) \frac{1}{|a|} X(\frac{j\omega}{a}) a1X(a)
卷积 x ( t ) ∗ y ( t ) x(t) \ast y(t) x(t)y(t) X ( j ω ) Y ( j ω ) X(j\omega)Y(j\omega) X()Y()
相乘 x ( t ) y ( t ) x(t)y(t) x(t)y(t) 1 2 π ∫ − ∞ + ∞ X ( j θ ) Y ( j ( ω − θ ) ) d θ \frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\theta) Y(j(\omega - \theta)) d\theta 2π1+X(jθ)Y(j(ωθ))dθ
时域微分 d x ( t ) d t \frac{dx(t)}{dt} dtdx(t) j ω X ( j ω ) j\omega X(j\omega) X()
时域积分 ∫ − ∞ t x ( t ) d t \int_{-\infty}^t x(t) dt tx(t)dt 1 j ω X ( j ω ) + π X ( 0 ) δ ( ω ) \frac{1}{j\omega} X(j\omega) + \pi X(0)\delta(\omega) 1X()+πX(0)δ(ω)
频域微分 t x ( t ) tx(t) tx(t) j d d ω X ( j ω ) j\frac{d}{d\omega}X(j\omega) jdωdX()
实信号的共轭对称性 x ( t ) x(t) x(t) 为实信号 X ( j ω ) = X ∗ ( − j ω ) X(j\omega) = X^*(-j\omega) X()=X()
实偶信号 x ( t ) x(t) x(t) 为实偶信号 X ( j ω ) X(j\omega) X() 为实偶函数
实奇信号 x ( t ) x(t) x(t) 为实奇信号 X ( j ω ) X(j\omega) X() 为纯虚奇函数
实信号的奇偶分解 x e ( t ) = E v { x ( t ) } , x o ( t ) = O d { x ( t ) } x_e(t) = Ev\{x(t)\}, x_o(t) = Od\{x(t)\} xe(t)=Ev{x(t)},xo(t)=Od{x(t)} 并且 x ( t ) x(t) x(t) 为实信号 ℜ { X ( j ω ) } , j ℑ { X ( j ω ) } \Re\{X(j\omega)\},j\Im\{X(j\omega)\} {X()},j{X()}
周期信号的帕瓦尔定理 x ( t ) x(t) x(t) ∫ − ∞ + ∞ ∣ x ( t ) ∣ 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ X ( j ω ) ∣ 2 d ω \int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega +x(t)2dt=2π1+X()2dω

基本傅里叶变换对

  1. 周期信号的傅里叶变换

考虑这样一个信号的傅里叶变换为:

X ( j ω ) = 2 π δ ( ω − ω 0 ) X(j\omega) = 2\pi\delta(\omega - \omega_0) X()=2πδ(ωω0)

其对应的时域信号为:

x ( t ) = 1 2 π ∫ − ∞ + ∞ 2 π δ ( ω − ω 0 ) e j ω t d ω = e j ω 0 t x(t) = \frac{1}{2 \pi} \int_{-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0) e^{j\omega t} d\omega = e^{j\omega_0 t} x(t)=2π1+2πδ(ωω0)etdω=ejω0t

那么通过周期信号的傅里叶系数关系为:

X ( j ω ) = ∑ k = − ∞ + ∞ 2 π a k δ ( ω − k ω 0 ) X(j\omega) = \sum_{k = -\infty}^{+\infty} 2 \pi a_k \delta(\omega - k\omega_0) X()=k=+2πakδ(ωkω0)

其对应的时域信号为:

x ( t ) = ∑ k = − ∞ + ∞ a k e j k ω 0 t x(t) = \sum_{k = -\infty}^{+\infty} a_k e^{jk\omega_0 t} x(t)=k=+akejkω0t

  1. 单边衰减信号

考虑信号 x ( t ) = e − a t u ( t ) , a > 0 x(t) = e^{-at}u(t), a> 0 x(t)=eatu(t),a>0 。其对应的傅里叶变换为:

X ( j ω ) = ∫ 0 ∞ e − a t e − j ω t d t = − 1 a + j ω e − ( a + j ω ) t ∣ 0 ∞ = 1 a + j ω ( a > 0 ) X(j\omega) = \int_0^{\infty} e^{-at} e^{-j\omega t} dt = -\frac{1}{a + j\omega} e^{-(a + j\omega)t} |_0^\infty = \frac{1}{a + j\omega} (a>0) X()=0eatetdt=a+1e(a+)t0=a+1(a>0)

  1. 双边衰减信号

考虑信号 x ( t ) = e − a ∣ t ∣ , a > 0 x(t) = e^{-a|t|}, a> 0 x(t)=eat,a>0 。其对应的傅里叶变换为:

X ( j ω ) = 1 a − j ω + 1 a + j ω = 2 a a 2 + ω 2 X(j\omega) = \frac{1}{a - j\omega} + \frac{1}{a + j\omega} = \frac{2a}{a^2 + \omega^2} X()=a1+a+1=a2+ω22a

  1. 单位冲激函数的傅里叶变换

单位冲激函数 x ( t ) = δ ( t ) x(t) = \delta(t) x(t)=δ(t) 的傅里叶变换为:

X ( j ω ) = ∫ − ∞ + ∞ δ ( t ) e − j ω t d t = 1 X(j\omega) = \int_{-\infty}^{+\infty} \delta(t) e^{-j\omega t} dt = 1 X()=+δ(t)etdt=1

  1. 矩形脉冲信号的傅里叶变换

考虑一个矩形脉冲信号:

x ( t ) = 1 , ∣ t ∣ < T 1 x(t) = 1 ,|t| < T_1 x(t)=1,t<T1

x ( t ) = 0 , ∣ t ∣ > T 1 x(t) = 0 ,|t| > T_1 x(t)=0,t>T1

其傅里叶变换为:

X ( j ω ) = ∫ − T 1 T 1 e j ω t d t = 2 sin ⁡ ω T 1 ω X(j\omega) = \int_{-T_1}^{T_1} e^{j\omega t} dt = 2\frac{\sin \omega T_1}{\omega} X()=T1T1etdt=2ωsinωT1

  1. 傅里叶变换的对偶性

假设信号 x ( t ) x(t) x(t) 存在傅里叶变换对:

X ( j ω ) = ∫ − ∞ + ∞ x ( t ) e − j ω t d t X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt X()=+x(t)etdt

x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( j ω ) e j ω t d ω x(t) = \frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega x(t)=2π1+X()etdω

那么信号 X ( j t ) X(jt) X(jt) 存在傅里叶变换对:

∫ − ∞ + ∞ X ( j t ) e − j ω t d t = 2 π x ( − ω ) \int_{-\infty}^{+\infty} X(jt) e^{-j\omega t} dt = 2\pi x(-\omega) +X(jt)etdt=2πx(ω)

1 2 π ∫ − ∞ + ∞ x ( ω ) e j ω t d ω = 1 2 π X ( − j t ) \frac{1}{2 \pi} \int_{-\infty}^{+\infty} x(\omega) e^{j\omega t} d\omega = \frac{1}{2 \pi} X(-jt) 2π1+x(ω)etdω=2π1X(jt)

  1. 典型的傅里叶变换对
信号傅里叶变换傅里叶级数系数(若是周期信号)
∑ k = − ∞ + ∞ a k e j k ω 0 t \sum_{k = -\infty}^{+\infty} a_k e^{jk\omega_0 t} k=+akejkω0t ∑ k = − ∞ + ∞ 2 π a k δ ( ω − k ω 0 ) \sum_{k = -\infty}^{+\infty} 2 \pi a_k \delta(\omega - k\omega_0) k=+2πakδ(ωkω0) a k a_k ak
e j k ω 0 t e^{jk\omega_0 t} ejkω0t 2 π δ ( ω − k ω 0 ) 2\pi \delta(\omega-k\omega_0) 2πδ(ωkω0) a 1 = 1 , a k = 0 a_1 = 1,a_k = 0 a1=1,ak=0
cos ⁡ ω 0 t \cos \omega_0 t cosω0t π [ δ ( ω − ω 0 ) + δ ( ω + ω 0 ) ] \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] π[δ(ωω0)+δ(ω+ω0)] a 1 = a − 1 = 1 2 , a k = 0 a_1 = a_{-1} = \frac{1}{2},a_k = 0 a1=a1=21,ak=0
sin ⁡ ω 0 t \sin \omega_0 t sinω0t π j [ δ ( ω − ω 0 ) − δ ( ω + ω 0 ) ] \frac{\pi}{j}[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] jπ[δ(ωω0)δ(ω+ω0)] a 1 = − a − 1 = 1 2 j , a k = 0 a_1 = -a_{-1} = \frac{1}{2j},a_k = 0 a1=a1=2j1,ak=0
x ( t ) = 1 x(t) = 1 x(t)=1 2 π δ ( ω ) 2\pi\delta(\omega) 2πδ(ω) a 0 = 1 , a k = 0 a_0 = 1,a_k = 0 a0=1,ak=0
周期方波 x ( t ) = 1 , ∣ t ∣ < T 1 x(t) = 1 ,|t| < T_1 x(t)=1,t<T1 ∑ k = − ∞ + ∞ 2 sin ⁡ k ω 0 T 1 k δ ( ω − k ω 0 ) \sum_{k = -\infty}^{+\infty}\frac{2\sin k\omega_0 T_1}{k}\delta(\omega - k\omega_0) k=+k2sinkω0T1δ(ωkω0) sin ⁡ k ω 0 T 1 k π \frac{\sin k\omega_0T_1}{k\pi} sinkω0T1
周期冲激串 ∑ n = − ∞ + ∞ δ ( t − n T ) \sum_{n = -\infty}^{+\infty}\delta(t - nT) n=+δ(tnT) 2 π T ∑ k = − ∞ + ∞ δ ( ω − 2 π k T ) \frac{2 \pi}{T}\sum_{k = -\infty}^{+\infty}\delta(\omega - \frac{2\pi k}{T}) T2πk=+δ(ωT2πk) a k = 1 T a_k = \frac{1}{T} ak=T1
矩形阶跃函数 x ( t ) = 1 , ∣ t ∣ < T 1 x(t) = 1,|t| < T_1 x(t)=1,t<T1 2 sin ⁡ ω T 1 ω \frac{2 \sin \omega T_1}{\omega} ω2sinωT1-
sin ⁡ W t π t \frac{\sin Wt}{\pi t} πtsinWt X ( j ω ) = 1 , ∣ ω ∣ < W X(j\omega) = 1, |\omega| <W X()=1,ω<W-
δ ( t ) \delta(t) δ(t) 1 1 1-
u ( t ) u(t) u(t) 1 j ω + π δ ( ω ) \frac{1}{j \omega} + \pi \delta(\omega) 1+πδ(ω)-
δ ( t − t 0 ) \delta(t - t_0) δ(tt0) e j ω t 0 e^{j\omega t_0} et0-
e − a t u ( t ) , ℜ a > 0 e^{-at}u(t),\Re{a} > 0 eatu(t),a>0 1 a + j ω \frac{1}{a+j\omega} a+1-
t e − a t u ( t ) , ℜ a > 0 te^{-at}u(t),\Re{a} > 0 teatu(t),a>0 1 ( a + j ω ) 2 \frac{1}{(a+j\omega)^2} (a+)21-
t n − 1 ( n − 1 ) ! e − a t u ( t ) , ℜ a > 0 \frac{t^{n-1}}{(n-1)!}e^{-at}u(t),\Re{a} > 0 (n1)!tn1eatu(t),a>0 1 ( a + j ω ) n \frac{1}{(a+j\omega)^n} (a+)n1-

傅里叶变换与线性常系数微分方程表述的系统

对于线性常系数微分方程描述的系统:

∑ k = 0 N a k d k y ( t ) d t k = ∑ k = 0 M b k d k x ( t ) d t k \sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k} k=0Nakdtkdky(t)=k=0Mbkdtkdkx(t)

有卷积关系:

y ( t ) = h ( t ) ∗ x ( t ) y(t) = h(t) \ast x(t) y(t)=h(t)x(t)

根据傅里叶变换的性质有:

Y ( j ω ) = H ( j ω ) X ( j ω ) Y(j\omega) = H(j \omega) X(j \omega) Y()=H()X()

我们称函数 H ( j ω ) H(j \omega) H()系统频响函数

对微分方程两边做傅里叶变换:

F { ∑ k = 0 N a k d k y ( t ) d t k } = F { ∑ k = 0 M b k d k x ( t ) d t k } \mathscr{F} \{\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k}\} = \mathscr{F} \{\sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}\} F{k=0Nakdtkdky(t)}=F{k=0Mbkdtkdkx(t)}

根据傅里叶变换的微分性质:

∑ k = 0 N a k ( j ω ) k Y ( j ω ) = ∑ k = 0 M b k ( j ω ) k X ( j ω ) \sum_{k=0}^{N} a_k (j\omega)^k Y(j\omega) = \sum_{k=0}^{M} b_k (j\omega)^k X(j\omega) k=0Nak()kY()=k=0Mbk()kX()

可得:

H ( j ω ) = Y ( j ω ) X ( j ω ) = ∑ k = 0 M b k ( j ω ) k ∑ k = 0 N a k ( j ω ) k H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{\sum_{k=0}^{M} b_k (j\omega)^k}{\sum_{k=0}^{N} a_k (j\omega)^k} H()=X()Y()=k=0Nak()kk=0Mbk()k

离散时间傅里叶变换

离散时间非周期的傅里叶表示

假设有离散时间的信号 x T [ n ] x_T[n] xT[n] ,那么其傅里叶系数表示为:

a k = 1 N ∑ n = < N > x [ n ] e − j k ω 0 n a_k = \frac{1}{N} \sum_{n = <N>} x[n] e^{-jk\omega_0n} ak=N1n=<N>x[n]ejkω0n

其对应的非周期的信号表示在一个周期内 [ − N 1 , N 2 ] [-N_1,N_2] [N1,N2] x [ n ] x[n] x[n] ,那么:

a k = 1 N ∑ n = − N 1 N 2 x [ n ] e − j k ω 0 n = 1 N ∑ n = − ∞ + ∞ x [ n ] e − j k ω 0 n a_k = \frac{1}{N} \sum_{n = -N_1}^{N_2} x[n] e^{-jk\omega_0n} = \frac{1}{N} \sum_{n = -\infty}^{+\infty} x[n] e^{-jk\omega_0n} ak=N1n=N1N2x[n]ejkω0n=N1n=+x[n]ejkω0n

我们定义 a k N a_kN akN 的包络:

X ( e j ω ) = ∑ n = − ∞ + ∞ x [ n ] e − j ω n , 分析公式 X(e^{j\omega}) = \sum_{n = -\infty}^{+\infty} x[n] e^{-j\omega n},\text{分析公式} X(e)=n=+x[n]ejωn,分析公式

为离散时间傅里叶变换。

那么有:

a k = 1 N X ( e j k ω 0 ) a_k = \frac{1}{N} X(e^{jk\omega_0}) ak=N1X(ejkω0)

则重新带回原始得到:

x T [ n ] = ∑ k = < N > 1 N X ( e j k ω 0 ) e j k ω 0 n = 1 2 π ∑ k = < N > X ( e j k ω 0 ) e j k ω 0 n ω 0 x_T[n] = \sum_{k = <N>} \frac{1}{N} X(e^{jk\omega_0}) e^{jk\omega_0n} = \frac{1}{2\pi} \sum_{k = <N>}X(e^{jk\omega_0}) e^{jk\omega_0n} \omega_0 xT[n]=k=<N>N1X(ejkω0)ejkω0n=2π1k=<N>X(ejkω0)ejkω0nω0

N → ∞ N \to \infty N 的时候,其在一个周期上的求和就变成了在 2 π 2\pi 2π 内的一个积分,即:

x [ n ] = 1 2 π ∫ 2 π X ( e j ω ) e j ω n d ω , 综合公式 x[n] = \frac{1}{2\pi} \int_{2 \pi} X(e^{j\omega}) e^{j\omega n} d\omega, \text{综合公式} x[n]=2π12πX(e)ejωndω,综合公式

因为 X ( e j ω ) e j ω n X(e^{j\omega}) e^{j\omega n} X(e)ejωn 关于 ω \omega ω 周期为 2 π 2\pi 2π 的函数,这说明我们的积分区间可以随意取一个连续的 2 π 2\pi 2π 周期。

同时,对于非周期信号的傅里叶变换频谱公式 X ( e j ω ) X(e^{j\omega}) X(e) 来说,也是一个关于 ω \omega ω 周期为 2 π 2\pi 2π 的函数,这说明 非周期的离散信号的傅里叶频谱是一个周期为 2 π 2\pi 2π 的函数

离散时间非周期的傅里叶的性质

性质周期信号傅里叶系数
线性 A x [ n ] + B y [ n ] Ax[n] +By[n] Ax[n]+By[n] A X ( e j ω ) + B Y ( e j ω ) AX(e^{j\omega}) + BY(e^{j\omega}) AX(e)+BY(e)
时移 x [ n − n 0 ] x[n - n_0] x[nn0] X ( e j ω ) e − j ω n 0 X(e^{j\omega}) e^{-j\omega n_0} X(e)en0
频移 x [ n ] e j ω 0 n x[n]e^{j\omega_0 n} x[n]ejω0n X ( e j ( ω − ω 0 ) ) X(e^{j(\omega - \omega_0)}) X(ej(ωω0))
共轭 x ∗ [ n ] x^*[n] x[n] X ∗ ( e − j ω ) X^*(e^{-j\omega}) X(e)
时间翻转 x [ − n ] x[-n] x[n] X ( e − j ω ) X(e^{-j\omega}) X(e)
时域尺度变换 x ( k ) [ n ] = x [ n / k ] x_{(k)}[n] = x[n/k] x(k)[n]=x[n/k] X ( e j k ω ) X(e^{jk\omega}) X(ejkω)
卷积 x [ n ] ∗ y [ n ] x[n] \ast y[n] x[n]y[n] X ( e j ω ) Y ( e j ω ) X(e^{j\omega})Y(e^{j\omega}) X(e)Y(e)
相乘 x [ t ] y [ t ] x[t]y[t] x[t]y[t] 1 2 π ∫ 2 π X ( e j θ ) Y ( e j ( ω − θ ) ) d θ \frac{1}{2\pi}\int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega - \theta)}) d\theta 2π12πX(ejθ)Y(ej(ωθ))dθ
时域差分 x [ n ] − x [ n − 1 ] x[n] - x[n-1] x[n]x[n1] ( 1 − e − j ω ) X ( e j ω ) (1 - e^{-j\omega})X(e^{j\omega}) (1e)X(e)
时域累加 ∑ k = − ∞ n x [ k ] \sum_{k=-\infty}^n x[k] k=nx[k] 1 1 − e − j ω X ( e j ω ) + π X ( e j 0 ) ∑ k = − ∞ + ∞ δ ( ω − 2 π k ) \frac{1}{1 - e^{-j\omega}}X(e^{j\omega}) +\pi X(e^{j0})\sum_{k=-\infty}^{+\infty}\delta(\omega - 2\pi k) 1e1X(e)+πX(ej0)k=+δ(ω2πk)
频域微分 n x [ n ] nx[n] nx[n] j d d ω X ( e j ω ) j\frac{d}{d\omega}X(e^{j\omega}) jdωdX(e)
实信号的共轭对称性 x [ n ] x[n] x[n] 为实信号 X ( e j ω ) = X ∗ ( e − j ω ) X(e^{j\omega}) = X^*(e^{-j\omega}) X(e)=X(e)
实偶信号 x [ n ] x[n] x[n] 为实偶信号 X ( e j ω ) X(e^{j\omega}) X(e) 为实偶函数
实奇信号 x [ n ] x[n] x[n] 为实奇信号 X ( e j ω ) X(e^{j\omega}) X(e) 为纯虚奇函数
实信号的奇偶分解 x e [ n ] = E v { x [ n ] } , x o [ n ] = O d { x [ n ] } x_e[n] = Ev\{x[n]\}, x_o[n] = Od\{x[n]\} xe[n]=Ev{x[n]},xo[n]=Od{x[n]} 并且 x [ n ] x[n] x[n] 为实信号 ℜ { X ( e j ω ) } , j ℑ { X ( e j ω ) } \Re\{X(e^{j\omega})\},j\Im\{X(e^{j\omega})\} {X(e)},j{X(e)}
周期信号的帕瓦尔定理 x [ n ] x[n] x[n] ∑ n = − ∞ + ∞ ∣ x [ n ] ∣ 2 = 1 2 π ∫ 2 π ∣ X ( e j ω ) ∣ 2 d ω \sum_{n = -\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega n=+x[n]2=2π12πX(e)2dω

基本离散时间信号的傅里叶变换对

  1. 周期信号

考虑信号 x [ n ] = e j ω 0 n x[n] = e^{j\omega_0 n} x[n]=ejω0n 的傅里变换为:

X ( e j ω ) = ∑ l = − ∞ + ∞ 2 π δ ( ω − ω 0 − 2 π l ) X(e^{j\omega}) = \sum_{l = -\infty}^{+\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l) X(e)=l=+2πδ(ωω02πl)

现在考虑一个周期为 N N N 的周期序列,其傅里叶级数为:

x [ n ] = ∑ k = < N > a k e j k ω 0 n x[n] = \sum_{k = <N>} a_k e^{jk\omega_0 n} x[n]=k=<N>akejkω0n

那么他的傅里叶变换就是:

X ( e j ω ) = ∑ k = − ∞ + ∞ 2 π a k δ ( ω − 2 π k N ) X(e^{j\omega}) = \sum_{k = -\infty}^{+\infty} 2 \pi a_k \delta(\omega - \frac{2\pi k}{N}) X(e)=k=+2πakδ(ωN2πk)

  1. 离散时间傅里叶系数的对偶性

若两个周期为 N N N 的序列 f [ n ] f[n] f[n] g [ n ] g[n] g[n] ,若 f [ k ] f[k] f[k] g [ n ] g[n] g[n] 的离散时间傅里叶系数,即

g [ n ] ↔ f [ k ] g[n] \leftrightarrow f[k] g[n]f[k]

那么:

f [ n ] ↔ 1 N g [ − k ] f[n] \leftrightarrow \frac{1}{N}g[-k] f[n]N1g[k]

  1. 离散时间傅里叶变换和连续时间傅里叶系数的对偶性

考虑离散时间傅里叶变换:

X ( e j ω ) = ∑ n = − ∞ + ∞ x [ n ] e − j ω n X(e^{j\omega}) = \sum_{n = -\infty}^{+\infty} x[n] e^{-j\omega n} X(e)=n=+x[n]ejωn

与连续时间傅里叶系数:

x ( t ) = ∑ k = − ∞ + ∞ a k e − j k ω 0 t x(t) = \sum_{k = -\infty}^{+\infty} a_k e^{-jk\omega_0 t} x(t)=k=+akejkω0t

这相当于将 x [ n ] x[n] x[n] 看成是一个连续时间函数的傅里叶系数,同理,我们可以将 x ( t ) x(t) x(t) 看做是一个离散时间函数的傅里叶变换。

  1. 常用基本离散时间信号的傅里叶变换对表
信号傅里叶变换傅里叶系数(若为周期的)
∑ k = < N > a k e j k ω 0 n , N = 2 π ω 0 \sum_{k = <N>}a_k e^{jk\omega_0 n},N = \frac{2\pi}{\omega_0} k=<N>akejkω0n,N=ω02π 2 π ∑ k = − ∞ + ∞ a k δ ( ω − k ω 0 ) 2\pi \sum_{k = -\infty}^{+ \infty}a_k\delta(\omega - k\omega_0) 2πk=+akδ(ωkω0) a k a_k ak
e j ω 0 n , N = 2 π ω 0 e^{j\omega_0 n},N = \frac{2\pi}{\omega_0} ejω0n,N=ω02π 2 π ∑ l = − ∞ + ∞ δ ( ω − ω 0 − 2 π l ) 2 \pi \sum_{l = -\infty}^{+\infty}\delta(\omega - \omega_0 - 2 \pi l) 2πl=+δ(ωω02πl) a k = 1 , k = 1 , 1 ± N , … a_k = 1,k = 1,1 \pm N,\ldots ak=1,k=1,1±N,
cos ⁡ ω 0 n , N = 2 π ω 0 \cos{\omega_0 n},N = \frac{2\pi}{\omega_0} cosω0n,N=ω02π π ∑ l = − ∞ + ∞ ( δ ( ω − ω 0 − 2 π l ) + δ ( ω + ω − 2 π l ) ) \pi \sum_{l = -\infty}^{+\infty}(\delta(\omega - \omega_0 - 2 \pi l) + \delta(\omega + \omega - 2\pi l)) πl=+(δ(ωω02πl)+δ(ω+ω2πl)) a k = 1 2 , k = 1 , 1 ± N , … a_k = \frac{1}{2},k = 1,1 \pm N,\ldots ak=21,k=1,1±N,
sin ⁡ ω 0 n , N = 2 π ω 0 \sin{\omega_0 n},N = \frac{2\pi}{\omega_0} sinω0n,N=ω02π π j ∑ l = − ∞ + ∞ ( δ ( ω − ω 0 − 2 π l ) − δ ( ω + ω − 2 π l ) ) \frac{\pi}{j} \sum_{l = -\infty}^{+\infty}(\delta(\omega - \omega_0 - 2 \pi l) - \delta(\omega + \omega - 2\pi l)) jπl=+(δ(ωω02πl)δ(ω+ω2πl)) a k = 1 2 j , k = 1 , 1 ± N , … ; a k = − 1 2 j , k = − 1 , − 1 ± N , … a_k = \frac{1}{2j},k = 1,1 \pm N,\ldots;a_k=-\frac{1}{2j},k=-1,-1\pm N,\ldots ak=2j1,k=1,1±N,;ak=2j1,k=1,1±N,
x [ n ] = 1 x[n] = 1 x[n]=1 2 π ∑ l = − ∞ + ∞ δ ( ω − 2 π l ) 2 \pi \sum_{l = -\infty}^{+ \infty}\delta(\omega - 2\pi l) 2πl=+δ(ω2πl) a k = 1 , k = 0 , ± N , … a_k = 1,k = 0,\pm N,\ldots ak=1,k=0,±N,
周期方波 x [ n ] = 1 , ∣ n ∣ ≤ N 1 , x [ n + N ] = x [ n ] x[n] = 1,|n| \le N_1,x[n + N] = x[n] x[n]=1,nN1,x[n+N]=x[n] 2 π ∑ k = − ∞ + ∞ a k δ ( ω − 2 π N ) 2\pi \sum_{k = -\infty}^{+\infty}a_k \delta(\omega - \frac{2\pi}{N}) 2πk=+akδ(ωN2π) a k = sin ⁡ ( 2 π k / N ) ( N 1 + 1 2 ) N sin ⁡ 2 π k / 2 N , k ≠ 0 , ± N , … ; a k = 2 N 1 + 1 N , k = 0 , ± N , … a_k = \frac{\sin{(2\pi k / N)(N_1 + \frac{1}{2})}}{N \sin{2\pi k/ 2N}},k \neq 0,\pm N,\ldots;a_k = \frac{2N_1 + 1}{N},k=0,\pm N,\ldots ak=Nsin2πk/2Nsin(2πk/N)(N1+21),k=0,±N,;ak=N2N1+1,k=0,±N,
∑ k = − ∞ + ∞ δ [ n − k N ] \sum_{k = -\infty}^{+\infty} \delta[n - kN] k=+δ[nkN] 2 π N ∑ k = − ∞ + ∞ δ ( ω − 2 π k N ) \frac{2 \pi}{N}\sum_{k = -\infty}^{+\infty}\delta(\omega - \frac{2 \pi k}{N}) N2πk=+δ(ωN2πk) a k = 1 N a_k = \frac{1}{N} ak=N1
a n u [ n ] a^nu[n] anu[n],|a| < 1$ 1 1 − a e − j ω \frac{1}{1 - ae^{-j\omega}} 1ae1-
x [ n ] = 1 , ∣ n ∣ ≤ N 1 x[n] = 1, |n| \le N_1 x[n]=1,nN1 sin ⁡ ω ( N 1 + 1 2 ) sin ⁡ ω / 2 \frac{\sin{\omega(N_1 + \frac{1}{2})}}{\sin{\omega/2}} sinω/2sinω(N1+21)-
sin ⁡ W n π n , 0 < W < π \frac{\sin{Wn}}{\pi n},0 < W < \pi πnsinWn,0<W<π X ( ω ) = 1 , 0 ≤ ∣ ω ∣ ≤ W X(\omega) = 1,0 \le |\omega| \le W X(ω)=1,0ωW 并且 X ( ω ) X(\omega) X(ω) 是周期的为 2 π 2\pi 2π-
δ [ n ] \delta[n] δ[n] 1 1 1-
u [ n ] u[n] u[n] 1 1 − e − j ω + ∑ k = − ∞ + ∞ π δ ( ω − w π k ) \frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{+ \infty}\pi \delta(\omega - w\pi k) 1e1+k=+πδ(ωwπk)-
δ [ n − n 0 ] \delta[n - n_0] δ[nn0] e − j ω n 0 e^{-j\omega n_0} en0-
( n + 1 ) a n u [ n ] , ∣ a ∣ < 1 (n+1)a^n u[n], |a| < 1 (n+1)anu[n],a<1 1 ( 1 − a e − j ω ) 2 \frac{1}{(1 - ae^{-j\omega})^2} (1ae)21-
( n + r − 1 ) ! n ! ( r − 1 ) ! a n u [ n ] , ∣ a ∣ < 1 \frac{(n + r - 1)!}{n! (r - 1)!} a^n u[n], |a| < 1 n!(r1)!(n+r1)!anu[n],a<1 1 ( 1 − a e − j ω ) r \frac{1}{(1 - ae^{-j\omega})^r} (1ae)r1-

由线性常系数差分方程表征的系统

由下面表示的线性常系数差分方程表征的系统:

∑ k = 0 N a k y [ n − k ] = ∑ k = 0 M b k x [ n − k ] \sum_{k = 0}^{N} a_k y[n - k] = \sum_{k = 0}^M b_k x[n - k] k=0Naky[nk]=k=0Mbkx[nk]

通过傅里叶变换时移和线性的性质可以表示为频域上:

∑ k = 0 N a k e − j k ω Y ( e j ω ) = ∑ k = 0 M b k e − j k ω X ( e j ω ) \sum_{k = 0}^N a_k e^{-jk\omega}Y(e^{j\omega}) = \sum_{k = 0}^M b_k e^{-jk\omega}X(e^{j\omega}) k=0NakejkωY(e)=k=0MbkejkωX(e)

或等效为:

H ( e j ω ) = Y ( e j ω ) X ( e j ω ) = ∑ k = 0 M b k e − j k ω ∑ k = 0 N a k e − j k ω H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k = 0}^M b_k e^{-jk\omega}}{\sum_{k = 0}^N a_k e^{-jk\omega}} H(e)=X(e)Y(e)=k=0Nakejkωk=0Mbkejkω

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 信号系统是一个重要的工程学科,用于研究信号的传输和处理。傅里变换信号系统中最基本的数学工具之一,它可以将一个信号从时域转换到频域。在Matlab实验中,我们可以使用内置的函数和工具箱来进行傅里变换。 首先,我们要创建一个信号,可以是一个正弦波、方波或其他类型的信号。我们可以使用Matlab的波形生成函数来创建一个信号,并可以设置信号的振幅、频率和时长。 接下来,我们使用Matlab的傅里变换函数对信号进行变换。最常用的函数是fft(),它可以计算离散傅里变换。这个函数将信号从时域转换到频域,并返回一个复数数组,其中包含信号的幅度和相位信息。 在得到傅里变换结果后,我们可以通过取模和相位计算信号的频谱。频谱显示了信号在不同频率上的强度。我们可以使用Matlab的plot()函数绘制频谱图,以便更好地分析信号的频率特性。 此外,在Matlab中还有一些其他的傅里变换函数,例如fftshift()和ifft()。fftshift()可以将频谱移动到中心,ifft()可以进行逆傅里变换,将信号从频域转换回时域。 通过进行傅里变换实验,我们可以更好地理解信号的频率特性和频谱变换过程。这对于信号处理、信号传输和通信系统设计等工程领域都非常重要。Matlab提供了强大的工具和函数,可以帮助我们进行傅里变换的分析和实验。 ### 回答2: 信号系统是电子信息类专业中非常重要的一门课程,而傅里变换信号系统中的一个重要概念和工具。Matlab是一种非常强大的数学计算软件,在信号系统课程中也被广泛应用。 信号可以是连续的或离散的,而傅里变换可以将时域信号转换为频域信号,从而可以更加直观地观察和分析信号的特性。在Matlab中,我们可以使用fft函数来进行傅里变换。 在进行傅里变换实验时,我们可以从一些简单的信号开始。例如,我们可以定义一个正弦信号sin(t),然后使用fft函数对其进行傅里变换。通过绘制频谱图,我们可以观察到正弦信号在频域中的频率和幅度。 此外,我们还可以进行频谱分析实验。输入一个含有多个频率成分的信号,例如s(t) = 2*cos(2*pi*f1*t) + 3*sin(2*pi*f2*t),其中f1和f2分别代表两个频率。通过对s(t)进行傅里变换,我们可以得到频谱图,从中可以清晰地看到两个频率成分的幅度和频率。 此外,在Matlab中还可以进行滤波实验。我们可以通过设计一个滤波器来滤除特定频率的成分。例如,我们可以设计一个低通滤波器,将高频成分过滤掉,只保留低频成分。 傅里变换信号系统课程中扮演着非常重要的角色,能够帮助我们更好地理解信号的特性和分析信号。通过Matlab实验,我们可以直观地观察信号的频谱特性,并进行一些相关的实验和分析。这些实验可以帮助我们更深入地了解信号系统中的傅里变换这一概念和工具。 ### 回答3: 傅里变换信号系统中非常重要的概念之一,它可以用于信号的频谱分析和信号处理。MATLAB是一个强大的数学计算软件,它提供了丰富的工具和函数,可以方便地进行傅里变换的计算和分析。 在MATLAB中,可以使用fft函数来计算信号傅里变换,fft函数的输入参数是信号的离散样本,输出结果是信号的频谱。通过对频谱进行进一步的分析和处理,可以得到很多有用的信息。 首先,我们可以使用fft函数计算信号的幅度谱和相位谱。幅度谱表示信号在不同频率上的能量强度,可以通过abs函数得到;相位谱表示信号在不同频率上的相位信息,可以通过angle函数得到。这样,我们可以对信号在频域上的特性进行分析,比如找到信号的主要频率成分,判断信号的频率分布情况,等等。 其次,我们可以使用ifft函数来计算信号的逆傅里变换,将信号从频域转换回时域。通过将信号的频谱进行逆变换,我们可以恢复原始信号的波形,并对信号进行处理和修改。 另外,MATLAB还提供了许多其他与傅里变换相关的函数和工具,比如fftshift函数可以将频谱进行平移,fft2函数可以进行二维信号傅里变换等等。这些函数和工具使得信号傅里变换在MATLAB中变得更加方便和灵活。 总的来说,信号系统中的傅里变换是一项重要的实验内容,通过MATLAB进行实验可以更好地理解和应用傅里变换。MATLAB提供了丰富的函数和工具,可以进行信号傅里变换计算和分析,从而更好地了解信号在频域上的特性,并对信号进行处理和修改。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值