概率论与数理统计笔记 第二章 随机变量及其概率分布

概率论与数理统计笔记 第二章 随机变量及其概率分布

概率论与数理统计笔记(计算机专业) 作者:catpub 新浪微博:@catpub

课程:中国大学MOOC浙江大学概率论与数理统计

部分平台可能无法显示公式,若公式显示不正常可以前往知乎或作业部落进行查看

点击前往知乎查看目录与导航

第9讲 随机变量

  • 定义
    • 随机变量 $X(e)$,$X$ 是 $S\to R$ 的函数,$e$ 是样本点
    • 自变量 $e\subset S$
    • 随机事件 $A={e|X(e)=I}={X=I}$
    • 如多次投掷骰子,随机事件 {6点在第3次出现} 可以记作 ${X=3}$,$X$ 是随机变量
  • 随机变量

    • 离散型随机变量,值的集合的基数小于等于阿列夫零(离散数学概念)
    • 连续型随机变量
  • 分布律

    • $X$$x_1$$x_2$$...$$x_k$$...$
      $P$$p_1$$p_2$$...$$p_k$$...$
    • $$P(X=x_k)=p_k (k=1,2,...)$$
  • 几何分布 Geometric Distribution

    • 多次投掷骰子,$6​$ 点第一次出现时投掷的次数

    • $X$$1$$2$$3$$...$$k$$...$
      $P$$$\frac{1}{6}$$$$\frac{5}{6}\cdot\frac{1}{6}$$$$(\frac{5}{6})^2 \cdot\frac{1}{6}$$$...$$$(\frac{5}{6})^{k-1} \cdot\frac{1}{6}$$$$...$$

第10讲 离散型随机变量

  • $0\text{-}1$分布(两点分布)

    • $$P(X=k)=p^k(1-p)^{n-k}$$

    • $X$$0$$1$
      $P$$1-p$$p$

    • 若X服从两点分布,则单次试验称为伯努利(Bernoulli)试验

    • 记为$X\sim 0-1(p)$

    • 也记为 $X\sim B(1,p)$,$B$ 是Binomial的意思,两点分布可以看作Binomial分布的特例

    • $\sim$ 读作服从于

  • 二项分布 Binomial Distribution

    • $$P(X=k)=C_n^k\cdot P^k\cdot (1-p)^{n-k}$$
    • $n$ 重Bernoulli实验,事件发生次数 $k$ 的统计规律
    • 记为$X\sim B(n,p)$
  • 泊松分布 Poisson Distribution

    • $$P(X=k)=\frac{\lambda^k e^{-\lambda}}{k!} (k=0,1,2,...)$$
    • 记为 $X\sim \pi(\lambda)$ 或 $x\sim P(\lambda)$
  • Poisson Distribution与Binomial Distribution的关系

    • 当 $n$ 很大 $p$ 很小的时候
    • $$C_n^k P^k (1-p)^{n-k}=\frac{\lambda^k e^{-\lambda}}{k!} \lambda=np$$
  • 几何分布 Geometric Distribution

    • $P(X=k)=p(1-p)^{k-1}$
    • 记为 $X\sim Geom(p)$
    • 实例:研究段誉多少次施展武功能成功的统计规律

第11讲 分布函数

  • 定义
    • $F_X(x)=P(X\leq x)$
  • 离散型的随机变量分布函数为阶梯函数
  • 性质
    • $P(a<X\leq b)=F(b)-F(a)$
    • $P(a<X<b)=F(b-0)-F(a)$
    • $P(X=b)=F(b)-F(b-0)$
    • $F(x)$ 单调不减
    • $F(-\infty)=0,F(+\infty)=1$
    • $F(x)$ 右连续

第12讲 连续性随机变量及其概率密度

  • 定义
    • $$F(x)=\int_{-\infty}^x f(t)dt$$
    • $F(x)$ 为连续型随机变量的分布函数
    • $f(t)$ 为连续型随机变量的概率密度函数
    • 若一个随机变量有概率密度函数则其一定为随机变量
  • 性质
    1. $$f(x)\geq 0$$
    2. $$F(+\infty)=1​$$
    3. $$P(x_1<X<x_2)=\int_{x_1}^{x_2}f(t)dt$$
    4. $$F'(x)=f(x)$$
    5. $$f(x)$$ 可以大于1
    6. 概率密度对 $>,\geq ,<,\leq$ 不敏感,即对端点取值不敏感

第13讲 均匀分布和指数分布

  • 均匀分布 Uniform Distribution
    • $$f(x)=\frac{1}{b-a} a\leq x<b$$
    • $$F(x)=\frac{x-a}{b-a} a\leq x<b$$
    • 记为 $X\sim U(a,b)$ 或 $X\sim Unif(a,b)$
  • 指数分布 Exponential Distribution
    • $$f(x)=\lambda e^{-\lambda x} x>0$$
    • $$F(x)=1-e^{-\lambda x} x>0$$
    • 记为 $X\sim E(\lambda)$ 或 $X\sim Emp(\lambda)$
    • 指数分布具有无记忆性(Memoryless Property)且在连续性随机变量的分布中,只有指数分布具有无记忆性
    • 实例:设旅客等待时间服从指数分布,则已知旅客已经等了20分钟,求旅客再等5分钟的概率,和旅客从头开始等5分钟的概率相同
      • 即 $P(X>25|X>20)=P(X>5)$
    • 指数分布常用来表示独立随机事件发生的时间间隔,如中文维基百科新条目出现的时间间隔
    • 在排队论中,一个顾客接受服务的时间长短也可以用指数分布来近似

第14讲 正态分布

  • 正态分布 Normal Distribution
    • $$f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
    • 记为 $X\sim N(\mu, \sigma^2)$
  • 性质
    • 关于 $x=\mu$ 对称
    • $$f_{max}=f(\mu)=\frac{1}{\sqrt{2\pi}\sigma}$$
    • $$limf(x)=0$$
  • 参数的性质
    • 改变 $\mu$,$f(x)$ 只沿 $x$ 轴评议
    • $\sigma$ 越大,$f(x)$ 越矮胖,$\sigma$ 称为尺度参数
  • 实例:身高,体重,测量误差,多个随机变量的和
  • 标准正态分布
    • $$Z\sim N(0,1)$$
    • $$\phi(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$
    • $$\Phi(z)=\int_{-\infty}^z\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt$$
    • $\Phi(z)$ 有标准正态分布函数表
  • 一般正态分布转为标准正态分布
    • 当 $X\sim N(\mu,\sigma^2)$ 时,$(x-\mu)/\sigma\sim N(0,1)$
    • $$F_x(a)=P(x\leq a)=P(\frac{x-\mu}{\sigma}\leq \frac{a-\mu}{\sigma})=\Phi(\frac{a-\mu}{\sigma})$$
  • $3\sigma$ 准则
    • 当 $x$ 落在 $(-3\sigma,3\sigma)$ 的概率为 $99.73%$

第15讲 随机变量函数的分布

  • 已知 $X$ 的概率分布,已知 $Y=g(x)$,求 $Y$ 的概率分布

    • 先给出 $Y$ 的可能分布,再利用等价事件来给出概率分布
    • 离散型随机变量,直接利用分布律求解即可
    • 连续型随机变量,先利用分布函数找到等价事件,再利用概率密度函数即可
  • 定理

    • 若 $Y=g(x)$,$g'(x)>0$ 或 $g'(x)<0$
    • $$f_Y(y)=f_x(h(y))\cdot |h'(y)| \alpha<y<\beta$$
    • $h(y)$ 是 $g(x)$ 的概率密度函数的反函数
    • $\alpha$ 和 $\beta$ 是根据 $x$ 与 $y$ 的对应关系求得的
  • 一般的

    • 若 $X\sim N(\mu,\sigma^2)$,$Y=aX+b$,则 $Y\sim (a\mu +b,a^2\sigma^)$
    • 若 $X\sim N(\mu,\sigma^2)​$,则$X^2\sim N(\sigma^2+\mu^2,\sigma^2(2\mu^2-\sigma^2))​$ 该定理证明较复杂,但在数理统计部分应用较广

作者拓展

  • 当前的所有分布
    • 二项分布 Binomial Distribution
    • 泊松分布 Poisson Distribution
    • 几何分布 Geometric Distribution
    • 均匀分布 Uniform Distribution
    • 指数分布 Exponential Distribution
    • 正态分布 Normal Distribution

本章最后修订时间:2017.12.13 如有错误欢迎前往知乎指正# 概率论与数理统计笔记 第二章 随机变量及其概率分布

概率论与数理统计笔记(计算机专业) 作者:catpub 新浪微博:@catpub

课程:中国大学MOOC浙江大学概率论与数理统计

部分平台可能无法显示公式,若公式显示不正常可以前往知乎或作业部落进行查看

第9讲 随机变量

  • 定义
    • 随机变量 $X(e)$,$X$ 是 $S\to R$ 的函数,$e$ 是样本点
    • 自变量 $e\subset S$
    • 随机事件 $A={e|X(e)=I}={X=I}$
    • 如多次投掷骰子,随机事件 {6点在第3次出现} 可以记作 ${X=3}$,$X$ 是随机变量
  • 随机变量

    • 离散型随机变量,值的集合的基数小于等于阿列夫零(离散数学概念)
    • 连续型随机变量
  • 分布律

    • $X$$x_1$$x_2$$...$$x_k$$...$
      $P$$p_1$$p_2$$...$$p_k$$...$
    • $$P(X=x_k)=p_k (k=1,2,...)$$
  • 几何分布 Geometric Distribution

    • 多次投掷骰子,$6​$ 点第一次出现时投掷的次数

    • $X$$1$$2$$3$$...$$k$$...$
      $P$$$\frac{1}{6}$$$$\frac{5}{6}\cdot\frac{1}{6}$$$$(\frac{5}{6})^2 \cdot\frac{1}{6}$$$...$$$(\frac{5}{6})^{k-1} \cdot\frac{1}{6}$$$$...$$

第10讲 离散型随机变量

  • $0\text{-}1$分布(两点分布)

    • $$P(X=k)=p^k(1-p)^{n-k}$$

    • $X$$0$$1$
      $P$$1-p$$p$

    • 若X服从两点分布,则单次试验称为伯努利(Bernoulli)试验

    • 记为$X\sim 0-1(p)$

    • 也记为 $X\sim B(1,p)$,$B$ 是Binomial的意思,两点分布可以看作Binomial分布的特例

    • $\sim$ 读作服从于

  • 二项分布 Binomial Distribution

    • $$P(X=k)=C_n^k\cdot P^k\cdot (1-p)^{n-k}$$
    • $n$ 重Bernoulli实验,事件发生次数 $k$ 的统计规律
    • 记为$X\sim B(n,p)$
  • 泊松分布 Poisson Distribution

    • $$P(X=k)=\frac{\lambda^k e^{-\lambda}}{k!} (k=0,1,2,...)$$
    • 记为 $X\sim \pi(\lambda)$ 或 $x\sim P(\lambda)$
  • Poisson Distribution与Binomial Distribution的关系

    • 当 $n$ 很大 $p$ 很小的时候
    • $$C_n^k P^k (1-p)^{n-k}=\frac{\lambda^k e^{-\lambda}}{k!} \lambda=np$$
  • 几何分布 Geometric Distribution

    • $P(X=k)=p(1-p)^{k-1}$
    • 记为 $X\sim Geom(p)$
    • 实例:研究段誉多少次施展武功能成功的统计规律

第11讲 分布函数

  • 定义
    • $F_X(x)=P(X\leq x)$
  • 离散型的随机变量分布函数为阶梯函数
  • 性质
    • $P(a<X\leq b)=F(b)-F(a)$
    • $P(a<X<b)=F(b-0)-F(a)$
    • $P(X=b)=F(b)-F(b-0)$
    • $F(x)$ 单调不减
    • $F(-\infty)=0,F(+\infty)=1$
    • $F(x)$ 右连续

第12讲 连续性随机变量及其概率密度

  • 定义
    • $$F(x)=\int_{-\infty}^x f(t)dt$$
    • $F(x)$ 为连续型随机变量的分布函数
    • $f(t)$ 为连续型随机变量的概率密度函数
    • 若一个随机变量有概率密度函数则其一定为随机变量
  • 性质
    1. $$f(x)\geq 0$$
    2. $$F(+\infty)=1​$$
    3. $$P(x_1<X<x_2)=\int_{x_1}^{x_2}f(t)dt$$
    4. $$F'(x)=f(x)$$
    5. $$f(x)$$ 可以大于1
    6. 概率密度对 $>,\geq ,<,\leq$ 不敏感,即对端点取值不敏感

第13讲 均匀分布和指数分布

  • 均匀分布 Uniform Distribution
    • $$f(x)=\frac{1}{b-a} a\leq x<b$$
    • $$F(x)=\frac{x-a}{b-a} a\leq x<b$$
    • 记为 $X\sim U(a,b)$ 或 $X\sim Unif(a,b)$
  • 指数分布 Exponential Distribution
    • $$f(x)=\lambda e^{-\lambda x} x>0$$
    • $$F(x)=1-e^{-\lambda x} x>0$$
    • 记为 $X\sim E(\lambda)$ 或 $X\sim Emp(\lambda)$
    • 指数分布具有无记忆性(Memoryless Property)且在连续性随机变量的分布中,只有指数分布具有无记忆性
    • 实例:设旅客等待时间服从指数分布,则已知旅客已经等了20分钟,求旅客再等5分钟的概率,和旅客从头开始等5分钟的概率相同
      • 即 $P(X>25|X>20)=P(X>5)$
    • 指数分布常用来表示独立随机事件发生的时间间隔,如中文维基百科新条目出现的时间间隔
    • 在排队论中,一个顾客接受服务的时间长短也可以用指数分布来近似

第14讲 正态分布

  • 正态分布 Normal Distribution
    • $$f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
    • 记为 $X\sim N(\mu, \sigma^2)$
  • 性质
    • 关于 $x=\mu$ 对称
    • $$f_{max}=f(\mu)=\frac{1}{\sqrt{2\pi}\sigma}$$
    • $$limf(x)=0$$
  • 参数的性质
    • 改变 $\mu$,$f(x)$ 只沿 $x$ 轴评议
    • $\sigma$ 越大,$f(x)$ 越矮胖,$\sigma$ 称为尺度参数
  • 实例:身高,体重,测量误差,多个随机变量的和
  • 标准正态分布
    • $$Z\sim N(0,1)$$
    • $$\phi(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$
    • $$\Phi(z)=\int_{-\infty}^z\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt$$
    • $\Phi(z)$ 有标准正态分布函数表
  • 一般正态分布转为标准正态分布
    • 当 $X\sim N(\mu,\sigma^2)$ 时,$(x-\mu)/\sigma\sim N(0,1)$
    • $$F_x(a)=P(x\leq a)=P(\frac{x-\mu}{\sigma}\leq \frac{a-\mu}{\sigma})=\Phi(\frac{a-\mu}{\sigma})$$
  • $3\sigma$ 准则
    • 当 $x$ 落在 $(-3\sigma,3\sigma)$ 的概率为 $99.73%$

第15讲 随机变量函数的分布

  • 已知 $X$ 的概率分布,已知 $Y=g(x)$,求 $Y$ 的概率分布

    • 先给出 $Y$ 的可能分布,再利用等价事件来给出概率分布
    • 离散型随机变量,直接利用分布律求解即可
    • 连续型随机变量,先利用分布函数找到等价事件,再利用概率密度函数即可
  • 定理

    • 若 $Y=g(x)$,$g'(x)>0$ 或 $g'(x)<0$
    • $$f_Y(y)=f_x(h(y))\cdot |h'(y)| \alpha<y<\beta$$
    • $h(y)$ 是 $g(x)$ 的概率密度函数的反函数
    • $\alpha$ 和 $\beta$ 是根据 $x$ 与 $y$ 的对应关系求得的
  • 一般的

    • 若 $X\sim N(\mu,\sigma^2)$,$Y=aX+b$,则 $Y\sim (a\mu +b,a^2\sigma^)$
    • 若 $X\sim N(\mu,\sigma^2)​$,则$X^2\sim N(\sigma^2+\mu^2,\sigma^2(2\mu^2-\sigma^2))​$ 该定理证明较复杂,但在数理统计部分应用较广

作者拓展

  • 当前的所有分布
    • 二项分布 Binomial Distribution
    • 泊松分布 Poisson Distribution
    • 几何分布 Geometric Distribution
    • 均匀分布 Uniform Distribution
    • 指数分布 Exponential Distribution
    • 正态分布 Normal Distribution

本章最后修订时间:2017.12.13 如有错误欢迎前往知乎指正

转载于:https://www.cnblogs.com/catpub/p/7967581.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值