高斯判别分析 GDA
多元高斯分布
正态分布
X
∼
N
(
μ
,
σ
2
)
X\sim N(\mu,\sigma^2)
X∼N(μ,σ2),他的概率密度函数为,
φ
(
x
)
\varphi(x)
φ(x)
φ
(
x
)
=
1
σ
2
π
e
−
(
x
−
μ
)
2
2
σ
2
\varphi(x) = \frac{1}{\sigma\sqrt{2\pi} }e^{\frac{-(x-\mu)^2}{2\sigma^2} }
φ(x)=σ2π1e2σ2−(x−μ)2
假设变量 X i X_i Xi之间相互独立且 X i ∼ N ( μ i , σ i 2 ) X_i\sim N(\mu_i, \sigma_i^2) Xi∼N(μi,σi2)
令
x
=
[
x
1
,
x
2
,
.
.
.
,
x
n
]
T
;
u
=
[
μ
1
,
μ
2
,
.
.
.
,
μ
n
]
T
;
σ
=
[
σ
1
.
σ
2
,
.
.
.
,
σ
n
]
T
x = [x_1,x_2,...,x_n]^T; u = [\mu_1,\mu_2,...,\mu_n]^T ;\sigma = [\sigma_1.\sigma_2,...,\sigma_n]^T
x=[x1,x2,...,xn]T;u=[μ1,μ2,...,μn]T;σ=[σ1.σ2,...,σn]T
则多元高斯分布的密度函数可以表示为:
对于上述指数部分,设
对其转换为矩阵表示形式
由Xi相互独立可知
所以多元高斯分布
X
∼
N
(
μ
,
∑
)
X\sim N(\mu,\sum)
X∼N(μ,∑)的密度函数为
M
e
a
n
向
量
μ
∈
R
n
协
方
差
矩
阵
∑
马
氏
距
离
r
2
=
(
x
−
μ
)
T
∑
−
1
(
x
−
μ
)
Mean向量\mu \in \mathbb{R}^n \\协方差矩阵\sum\\马氏距离r^2=(x-\mu)^T\sum^{-1}(x-\mu)
Mean向量μ∈Rn协方差矩阵∑马氏距离r2=(x−μ)T∑−1(x−μ)
二元高斯分布
高斯判别分析模型
如果特征值x是连续v的随机变量,可以使用高斯判别分析模型完成特征值测分类。
假设特征值是二分类,结果服从0-1分布,(如果是多分类就服从二向分布)
模型:
y
∼
B
e
r
n
o
u
l
l
i
(
ϕ
)
x
∣
y
=
0
∼
N
(
μ
0
,
∑
)
x
∣
y
=
1
∼
N
(
μ
1
,
∑
)
y\sim Bernoulli(\phi)\\x|y = 0 \sim N(\mu_0,\sum) \\x|y=1\sim N(\mu_1,\sum)
y∼Bernoulli(ϕ)x∣y=0∼N(μ0,∑)x∣y=1∼N(μ1,∑)
概率密度函数为:
模型待估计的参数为
φ
,
∑
,
μ
0
,
μ
1
\varphi,\sum,\mu_0,\mu_1
φ,∑,μ0,μ1,模型有两个不同的期望,有一个相同的协方差。
给定m个样本,该模型的极大似然函数的对数方程为:
解析解:
GDA 和logistic回归
GDA可以写成逻辑回归的形式,但是GDA有更严格的模型假设,设
p
(
x
∣
y
)
p(x|y)
p(x∣y)为高斯混合分布的。如果混合高斯模型假设是正确的正确的,那么GDA有更高的拟合度。
实践中,逻辑回归比使用GDA更加普遍。