单纯形法min例题详解_单纯形法例题讲解

基可行解单纯形法是针对标准形式的线性规划问题进行演算的,任何线性规划问题都可以化为标准形式。min (1)cxfs.t (2)bA(3)0x其中 TmmnmnTnn bbaaaaAxxcc ).,(, .,),.(),,.( 2121 2221 112121 假设 ,并设系数矩阵 A 的秩为 m,即mn设约束方程(2)中没有多余的方程,用表示 A 的第 列,于是(2 可写成jpj(4)bpxmkjj1矩阵 A 的任意一个 m 阶非奇异子方阵为LP 的一个基(或基阵) ,若(5)),.(21jmjjppB是一个基,则对应变量 ,jmjj xx,.,21称关于 B 的基变量,其余变量成为关于 B的非基变量,若令非基变量都取零值,则(4)变为(6)bpxmkjkj1由于此方程组的系数矩阵 B 是满秩方阵,故知(6)有唯一解,记为于是按分量Tjnjj xx),.,( 0()0(2)0(1 ),.\,.21(0),.3(21)0( mjjkjk jjnx所构成的向量 是约束方程组 的一个)( bAx解,称此 为 LP 的对应于基 B 的基解)0(x(或基本解) ,也可称为方程组 的一x个基解,如果 为一基解,且满足)0(x即它的所有分量都非负,则称此0)(x是 LP 的一个基可行解,基可行解对应)(的基称为可行基。设对应基阵 ,即),.(21mppB为基变量 , 是非mxx,.21 nxx,.,21基变量,记),.,( ),.,( ),.,(212121 nmm Tnn TmB pppNxxxx从而 A=(B,N),相应地分划 ,约),(NBcc束方程(2)可以写成 bxNBnB),(即 由此解得bxBxN(7)NB xB11这是用非基变量表达基变量的公式在(7)中令 而知 0Nx TmB xxbB ),.,( 0()0(2)(101求解线性规划问题min 421xxfts. 3512243xx5),,1(0 jxj已知初始可行基 0B于是可列出 对应的单纯形表 ,如表所0B)(0BT示从表可以看出,检验数中仅有 ,故取2 为进基变量,由于最小比值2x 120min2iib1xx3x4x5xf4 0 1 -1 0 01x2 1 -2 1 0 042 0 1 -2 1 05x5 0 1 1 0 1在第 32 行取得,故取第 2 行对应的基变量为离基变量,于是元素 是上表的枢元4x 12b为求出新基 对应的单纯形表,3211pB对 作初等形变换,使 对应的列变为单)(0T 2x位列向量。在上表中枢元

展开阅读全文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值