第二节 矩阵消元

1、消元知识点脑图

1265156-20180926093337471-1642236119.png

2、消元法

消元是求解方程组的过程。初中时期我们学习过通过方程之间的加减操作,消除某个变量的系数,简化方程,最终求出变量值。在线性代数里,将消元进一步系统化,因此引入了几个概念。我们以一组方程为例。
\[ \begin{cases} & \text x+ 2y + z = 2 & (1)\\ & \text 3x+8y+z=12 & (2)\\ & \text 4y+z=2 & (3) \end{cases} \]
我们用矩阵形式来表示该方程组。
\[ \begin{bmatrix} 1&2 &1 \\ 3&8 &1 \\ 0&4 &1 \end{bmatrix}\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 2\\ 12\\ 2 \end{bmatrix} \]
简化后是
\[ AX=b \]

(1)组成增广矩阵

\[ \begin{bmatrix} 1&2 &1 &2\\ 3&8 &1 &12\\ 0&4 &1 &2 \end{bmatrix} \]
增广矩阵是系数矩阵A与b向量合并后的矩阵,下面我们通过这个增广矩阵来进行消元,使得方程左右两边同时变化。大家不理解的时候可以想想方程组的变化。

(2)消元(2,1)元素

这步消元是消除方程2的x变量。
\[ \begin{bmatrix} \underline{1}&2 &1 &2 \\ 3&8 &1 &12\\ 0&4 &1 &2 \end{bmatrix} \overset{(2,1)}{\rightarrow} \begin{bmatrix} 1&2&1 &2\\ 0&2&-2 &6\\ 0&4&1 & 2 \end{bmatrix} \]

首先选择(1,1)元素作为主元(图中画下划线),消元(2,1)元素。执行如下操作:
\[ Row2 = Row2 + Row1\times (-3) \]

(3)消元(3,1)元素

这一步是消除方程3的(3,1)元素,因为方程3的(3,1)元素为0所以不用继续,若不为0,可以参照步骤2。

(4)消元(3,2)元素

下面进一步消除第三行y的系数。先确定主元(2,2),大家可以思考下如果(2,2)是0如何操作?
\[ \begin{bmatrix} 1&2&1 &2\\ 0&{\underline{2}}&-2 &6\\ 0&4&1&2 \end{bmatrix} \]
执行消除(3,2)
\[ Row3 = Row3 + Row2\times(-2) \]
变化如下:
\[ \begin{bmatrix} 1&2&1 &2\\ 0&{\underline{2}}&-2 &6\\ 0&4&1 &2 \end{bmatrix}\overset{(3,2)}{\rightarrow} \begin{bmatrix} 1&2&1 &2\\ 0&2&-2 &6\\ 0&0&5&-10 \end{bmatrix} \]

(5)回代

经过上面步骤消元后的矩阵等式变成:
\[ \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&0&5 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix}= \begin{bmatrix} 2\\ 6\\ -10 \end{bmatrix} \]
这里的系数矩阵左下角都是0,称为上三角矩阵(Upper triangular)简称U。
先求出z,代入第二行求出y,最后代入第一行求出x。
\[ \begin{cases} & x=2 \\ & y=1 \\ &z=-2 \end{cases} \]

主元:是指在消元过程中起主导作用的元素。

3、消元矩阵

上面的步骤我们还是按照传统求解方程组的形式进行消元,现在我们切换到矩阵形式,以矩阵的语言来表示上面的消元矩阵。
参考第一节的方式简化消元后的矩阵。

\[ U=\begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&0&5 \end{bmatrix} \]
\[ c=\begin{bmatrix} 2 \\ 6 \\ -10 \end{bmatrix} \]
矩阵方程可以简化为
\[ UX=c \]
那这样只要将A与某个矩阵相乘得到U,就能算出整个方程组的解了:
\[ ?A=U \]
按照上面的消元步骤,分两步变化:
\[ E_{32}(E_{21}A)=U \]
这里的E称为初等矩阵,乘法的结合律在这里依然适用(交换律不适用)于是整个式子就变成了:
\[ (E_{32}E_{21})A=U \]
这里要首先介绍下矩阵变换

\[ A=\begin{bmatrix} a_{11}&a_{12}&a_{13} \\ a_{21}&a_{22}&a_{23} \\ a_{31}&a_{32}&a_{33} \end{bmatrix} \\ B=\begin{bmatrix} b_{11}&b_{12}&b_{13} \\ b_{21}&b_{22}&b_{23} \\ b_{31}&b_{32}&b_{33} \end{bmatrix} \]

(1)矩阵相乘

\[\small{C=AB \\ = \begin{bmatrix} c_{11}=a_{11}b_{11}+a_{12}b_{21}+a_{13}b_{31}&c_{12}=a_{11}b_{12}+a_{12}b_{22}+a_{13}b_{32}&c_{13}=a_{11}b_{13}+a_{12}b_{23}+a_{13}b_{33} \\ c_{21}=a_{21}b_{11}+a_{22}b_{21}+a_{23}b_{31}&c_{22}=a_{21}b_{12}+a_{22}b_{22}+a_{23}b_{32}&c_{23}=a_{21}b_{13}+a_{22}b_{23}+a_{23}b_{33} \\ c_{31}=a_{31}b_{11}+a_{32}b_{21}+a_{33}b_{31}&c_{32}=a_{31}b_{12}+a_{32}b_{22}+a_{33}b_{32}&c_{33}=a_{31}b_{13}+a_{32}b_{23}+a_{33}b_{33} \end {bmatrix} (1)} \]
\[=\small{\begin{bmatrix} c_{11}=ARow1*BCol1&c_{12}=ARow1*BCol2&c_{13}=ARow1*BCol3 \\ c_{21}=ARow2*BCol1&c_{22}=ARow2*BCol2&c_{23}=ARow2*BCol3\\ c_{31}=ARow3*BCol1&c_{32}=ARow3*BCol2&c_{33}=ARow3*BCol3 \end {bmatrix} (2)} \]
\[ =\small{\begin{bmatrix} col1=A\begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix}& col2=A\begin{bmatrix} b_{12}\\b_{22}\\b_{32} \end{bmatrix} & col3=A\begin{bmatrix} b_{13}\\b_{23}\\b_{33} \end{bmatrix} \end {bmatrix} (3) } \]
\[ =\small{\begin{bmatrix} row1=\begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix}B \\ row2=\begin{bmatrix} a_{21} & a_{22} & a_{23} \end{bmatrix}B \\ row3=\begin{bmatrix} a_{31} & a_{32} & a_{33} \end{bmatrix}B \end {bmatrix} (4)} \]
可以看出A决定了C的行,B决定了C的列。从行的角度理解,C的每行就是B各行按照A对应行向量的线性组合;从列的角度理解,C的各列就是A各列按照B对应列向量的线性组合。

(2)计算E

根据上面提供的矩阵相乘(第三种)的思路。首先计算出
\[ E_{21}=\begin {bmatrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end {bmatrix} \\ E_{32}=\begin {bmatrix} 1&0&0\\ 0&1&0\\ 0&-2&1 \end {bmatrix} \\ E = E_{32}E_{21} = \begin {bmatrix} 1&0&0\\ -3&1&0\\ 6&-2&1 \end {bmatrix} \]
大家可以代入式中计算下
\[ EA=U \]
是否成立。

4、逆

上面的E我们是依靠消元的步骤求出,并不是完全采用矩阵的形式。数学家们使用了另一种办法。
\[ EA=U \\ 只需 E^{-1}EA=E^{-1}U => A=E^{-1}U \]
也就是先求E的逆矩阵,再求E。关于逆会在后续介绍。

5、矩阵置换

有一类特殊矩阵,可以交换矩阵的行或列。这类矩阵就是置换矩阵。例如
\[I= \begin {bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end {bmatrix} \]
对角线为1,其余为0的矩阵为单位矩阵,任何矩阵有AI=IA=A。而将单位矩阵某些行或列交换形成的矩阵称为置换矩阵记为P。

(1)行交换

交换1,2行
\[ PA= \begin {bmatrix} 0&1&0\\ 1&0&0\\ 0&0&1 \end {bmatrix} \begin {bmatrix} a&b&c\\ d&e&f\\ g&h&i \end {bmatrix}=\begin {bmatrix} d&e&f\\ a&b&c\\ g&h&i \end {bmatrix} \]
要交换行,只需先交换I的指定行,然后左乘矩阵。

(2)列交换

交换1,2列
\[ AP= \begin {bmatrix} a&b&c\\ d&e&f\\ g&h&i \end {bmatrix} \begin {bmatrix} 0&1&0\\ 1&0&0\\ 0&0&1 \end {bmatrix} = \begin {bmatrix} b&a&c\\ e&d&f\\ h&g&i \end {bmatrix} \]
要交换列,只需先交换I的指定列,然后左乘矩阵。

转载于:https://www.cnblogs.com/lanrenji/p/9705079.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: C语言写矩阵消元代码的步骤如下: 1、定义一个二维数组,用于存储矩阵中的元素; 2、用for循环遍历数组,将最大元素置于对角线上; 3、用for循环实现除法运算,将其他元素除以对角线元素,形成单位化矩阵; 4、用for循环实现减法运算,将其他元素减去对角线元素,将其余元素置零; 5、用for循环实现乘法运算,将结果矩阵的元素乘以原矩阵的元素,得到最终结果。 ### 回答2: 矩阵消元是一种线性代数中常用的操作,可以将一个矩阵通过一系列行变换,得到一个上三角矩阵或者是行最简形矩阵。以下是用C语言编写的一个简单矩阵消元代码的示例: ```c #include <stdio.h> #define SIZE 3 // 矩阵的大小 void printMatrix(float matrix[SIZE][SIZE+1]) { for(int i=0; i<SIZE; i++) { for(int j=0; j<SIZE+1; j++) { printf("%6.2f ", matrix[i][j]); } printf("\n"); } } void gaussianElimination(float matrix[SIZE][SIZE+1]) { for(int i=0; i<SIZE-1; i++) { // 寻找主元素 int max_row = i; float max_val = matrix[i][i]; for(int j=i+1; j<SIZE; j++) { if(matrix[j][i] > max_val) { max_row = j; max_val = matrix[j][i]; } } // 交换行 if(max_row != i) { for(int j=i; j<SIZE+1; j++) { float temp = matrix[i][j]; matrix[i][j] = matrix[max_row][j]; matrix[max_row][j] = temp; } } // 消元 for(int j=i+1; j<SIZE; j++) { float factor = matrix[j][i] / matrix[i][i]; for(int k=i; k<SIZE+1; k++) { matrix[j][k] -= factor * matrix[i][k]; } } } } void backSubstitution(float matrix[SIZE][SIZE+1]) { float solution[SIZE]; for(int i=SIZE-1; i>=0; i--) { solution[i] = matrix[i][SIZE]; for(int j=i+1; j<SIZE; j++) { solution[i] -= matrix[i][j] * solution[j]; } solution[i] /= matrix[i][i]; } // 输出解 printf("解为:\n"); for(int i=0; i<SIZE; i++) { printf("x%d = %6.2f\n", i+1, solution[i]); } } int main() { float matrix[SIZE][SIZE+1] = { {2, 1, -1, -8}, {-3, -1, 2, 1}, {-2, 1, 2, -3} }; printf("原始矩阵:\n"); printMatrix(matrix); gaussianElimination(matrix); printf("上三角矩阵:\n"); printMatrix(matrix); backSubstitution(matrix); return 0; } ``` 这段代码实现了对一个大小为3的矩阵进行消元操作。在`main`函数中,我们首先定义了一个大小为3x4的二维数组`matrix`,其中前3列是矩阵系数矩阵,最后1列是等号右侧的常数矩阵。 然后,通过调用`printMatrix`函数,我们输出了原始矩阵的内容。 接下来,我们调用`gaussianElimination`函数来进行高斯消元,将矩阵转化为上三角形式。在该函数中,我们采用了主元选取策略,确保每次消元时使用绝对值最大的元素作为主元素。然后通过行交换和消元操作,将主元下方的元素都变为0。 最后,我们调用`backSubstitution`函数对上三角矩阵进行回代操作,求解方程组的解,并输出结果。 运行该代码,输出结果将包括原始矩阵、上三角矩阵和方程组的解。这就是使用C语言编写的一个简单的矩阵消元的示例代码。 ### 回答3: 矩阵消元是线性代数中的一种常用操作,可以将一个矩阵转化为其标准形式,简化后续的计算操作。下面是一个用C语言写的简单矩阵消元的代码: ```c #include <stdio.h> #define MAX_SIZE 100 void printMatrix(int n, int mat[][MAX_SIZE]) { for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { printf("%d ", mat[i][j]); } printf("\n"); } } void rowOperation(int n, int mat[][MAX_SIZE], int row1, int row2, int scalar) { for(int i=0; i<n; i++) { mat[row2][i] += scalar * mat[row1][i]; } } void rowEchelonForm(int n, int mat[][MAX_SIZE]) { int lead = 0; for(int r=0; r<n; r++) { if(lead >= n) return; int i = r; while(mat[i][lead] == 0) { i++; if(i == n) { i = r; lead++; if(lead == n) return; } } // 交换第r行和第i行 for(int j=0; j<n; j++) { int temp = mat[r][j]; mat[r][j] = mat[i][j]; mat[i][j] = temp; } // 将第r行的首元素变为1 int scalar = mat[r][lead]; for(int j=0; j<n; j++) { mat[r][j] /= scalar; } // 去其他行中的首元素 for(int j=0; j<n; j++) { if(j != r) { scalar = mat[j][lead]; rowOperation(n, mat, r, j, -scalar); } } lead++; } } int main() { int n; printf("请输入矩阵的维度:"); scanf("%d", &n); int matrix[MAX_SIZE][MAX_SIZE]; printf("请输入矩阵的元素:\n"); for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { scanf("%d", &matrix[i][j]); } } printf("原始矩阵为:\n"); printMatrix(n, matrix); rowEchelonForm(n, matrix); printf("矩阵消元后的结果为:\n"); printMatrix(n, matrix); return 0; } ``` 以上代码实现了一个求矩阵消元的函数`rowEchelonForm`,可以将输入的矩阵转化为行阶梯形式。在`main`函数中,首先获取矩阵的维度,然后输入矩阵的元素,调用`rowEchelonForm`函数进行消元,并打印消元后的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值