|
关于自相关、偏自相关:
一、自协方差和自相关系数
p阶自回归AR(p)
自协方差 r(t,s)=E[X(t)-EX(t)][X(s)-EX(s)]
自相关系数ACF=r(s,t)/[(DX(t).DX(s))^0.5]
二、平稳时间序列自协方差与自相关系数
1、平稳时间序列可以定义r(k)为时间序列的延迟k自协方差函数:
r(k)=r(t,t+k)=E[X(t)-EX(t)][X(t+k)-EX(t+k)]
2、平稳时间序列的方差相等DX(t)=DX(t+k)=σ2,
所以DX(t)*DX(t+k)=σ2*σ2,
|

本文介绍了如何在R语言中利用ACF(自相关函数)和PACF(偏自相关函数)来分析时间序列,并通过这些工具对残差进行白噪声检验。通过理解这两个概念,可以更好地识别时间序列的结构和建模。
最低0.47元/天 解锁文章
1497

被折叠的 条评论
为什么被折叠?



